"$callexciton" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
 
(未顯示同一使用者於中間所作的 48 次修訂)
行 2: 行 2:
   
 
Singlet Rate Equation:
 
Singlet Rate Equation:
<math>\frac{dn_{ex}^S}{dt}=D^S{\nabla}^2{n_{ex}^S(r)}-(k_{r}^S+k_{nr}^S+k_{e}^Sn+k_{h}^Sp)+n_{ex}^S(r)-\gamma{n_{ex}(r)}^2+G</math>
+
<math>\frac{S}{dt}=D^S{\nabla}^2{S}-(k_{r}^S+k_{nr}^S+k_{e}^Sn+k_{h}^Sp+k_{TS}T)S+\alpha\frac{\gamma_{TS}}{2}{T}^2+G_{S}</math>
   
 
Triplet Rate Equation:
 
Triplet Rate Equation:
<math>\frac{dn_{ex}}{dt}=D{\nabla}^2{n_{ex}(r)}-\frac{n_{ex}(r)}{\tau}-\gamma{n_{ex}(r)}^2+G</math>
+
<math>\frac{T}{dt}=D^S{\nabla}^2{T}-(k_{r}^T+k_{nr}^T+k_{e}^Tn+k_{h}^Tp)T-\gamma_{TS}T^2-\frac{\gamma_{TT}}{2}{T}^2+G_{T}</math>
   
  +
'''<big><big>Physical Mechanics</big></big>'''<br />
  +
<big>1. Exciton Diffusion: <math>D^S{\nabla}^2{n_{ex}}</math></big>
  +
  +
<big>2. Exciton Quenching: <math>(k_{r}^{S,T}+k_{nr}^{S,T})S/T, [{S_1/T}_{1}\rightarrow {S_0/T}_{0}]</math></big>
  +
  +
<big>3. Singlet-Polaron Quenching: <math>(k_{e}^Sn+k_{h}^Sp)S, [S_1+n/p\rightarrow S_0+n/p^{*}]</math></big>
  +
  +
<big>4. Triplet-Polaron Quenching: <math>(k_{e}^Tn+k_{h}^Tp)T, [T_1+n/p\rightarrow S_0+n/p^{*}]</math></big>
  +
  +
<big>5. Triplet-Singlet Quenching: <math>k_{TS}TS, [S_1+T_1\rightarrow S_0+T_1]</math></big>
  +
  +
<big>6. Triplet-Triplet Annihilation: <math>\gamma_{TS}T^2+\frac{\gamma_{TT}}{2}{T}^2, [T_1+T_1\rightarrow S_0+T_1]\&[T_1+T_1\rightarrow S_1+S_0]</math></big>
  +
  +
<big>7. Triplet-Triplet Fusion: <math>\alpha\frac{\gamma_{TS}}{2}{T}^2, [T_1+T_1\rightarrow S_1+S_0]</math></big>
   
 
Where 
 
Where 
行 29: 行 43:
 
6: Singlet and Triplet Exciton Solver (For TADF OLEDs model)
 
6: Singlet and Triplet Exciton Solver (For TADF OLEDs model)
 
4: Triplet Exciton Solver with exciton blocking boundary
 
4: Triplet Exciton Solver with exciton blocking boundary
  +
7: Singlet-Triplet Exciton Solver (For TTF/TADF OLEDs)
  +
71: Time-dependent singlet-triplet exciton solver with pumping time (For TTF/TADF OLEDs)
  +
711: Time-dependent singlet-triplet exciton solver (For TTF/TADF's TrEL and TRPL spectrum)
  +
 
* b : Start time (For time-dependent solver)
 
* b : Start time (For time-dependent solver)
 
* c : dt (For time-dependent solver)
 
* c : dt (For time-dependent solver)
行 60: 行 78:
 
'''<big><big>Parameter Explanation</big></big>'''
 
'''<big><big>Parameter Explanation</big></big>'''
 
...
 
...
  +
  +
  +
<big>'''<big>Output Format</big>'''</big> <br />
  +
'''<big><big>*.1DexQE</big></big>'''<br />
  +
V I Sr Snr Tr Tnr Sisc Tisc KeS KhS keT khT kts Sann TSA TTA sumSQE sumTQE
  +
  +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
  +
  +
sumSQE+sumTQE should equal to 1.
   
 
[[Subroutine_exciton1D]],
 
[[Subroutine_exciton1D]],

於 2021年8月17日 (二) 10:56 的最新修訂

</math>Function for calculate the exciton distribution. We usually use this equation for organic material. Behavior of exciton will follow this equation. You can see the detail in Subroutine_exciton1D.

Singlet Rate Equation: \frac{S}{dt}=D^S{\nabla}^2{S}-(k_{r}^S+k_{nr}^S+k_{e}^Sn+k_{h}^Sp+k_{TS}T)S+\alpha\frac{\gamma_{TS}}{2}{T}^2+G_{S}

Triplet Rate Equation: \frac{T}{dt}=D^S{\nabla}^2{T}-(k_{r}^T+k_{nr}^T+k_{e}^Tn+k_{h}^Tp)T-\gamma_{TS}T^2-\frac{\gamma_{TT}}{2}{T}^2+G_{T}

Physical Mechanics
1. Exciton Diffusion: D^S{\nabla}^2{n_{ex}}

2. Exciton Quenching: (k_{r}^{S,T}+k_{nr}^{S,T})S/T, [{S_1/T}_{1}\rightarrow {S_0/T}_{0}]

3. Singlet-Polaron Quenching: (k_{e}^Sn+k_{h}^Sp)S, [S_1+n/p\rightarrow S_0+n/p^{*}]

4. Triplet-Polaron Quenching: (k_{e}^Tn+k_{h}^Tp)T, [T_1+n/p\rightarrow S_0+n/p^{*}]

5. Triplet-Singlet Quenching: k_{TS}TS, [S_1+T_1\rightarrow S_0+T_1]

6. Triplet-Triplet Annihilation: \gamma_{TS}T^2+\frac{\gamma_{TT}}{2}{T}^2, [T_1+T_1\rightarrow S_0+T_1]\&[T_1+T_1\rightarrow S_1+S_0]

7. Triplet-Triplet Fusion: \alpha\frac{\gamma_{TS}}{2}{T}^2, [T_1+T_1\rightarrow S_1+S_0]

Where 

  • D is diffusion coefficient.
  • \tau is relaxation time of exciton.
  • \gamma is annihilation rate constant.
  • G is exciton generation rate.

Format

$callexciton
n
a 4 b c d f
d kr knr gamma g

Parameter Explanation

  • n : the number of tables we usually set n as 5.
  • a : The type of exciton solver mode
 1: Time-dependent triplet solver 
 123: Time-dependent triplet and singlet solver (For TADF OLEDs model)
 3: Triplet Exciton Solver (For PhOLEDs model)
 6: Singlet and Triplet Exciton Solver (For TADF OLEDs model)
 4: Triplet Exciton Solver with exciton blocking boundary 
 7: Singlet-Triplet Exciton Solver (For TTF/TADF OLEDs)
 71: Time-dependent singlet-triplet exciton solver with pumping time (For TTF/TADF OLEDs)
 711: Time-dependent singlet-triplet exciton solver (For TTF/TADF's TrEL and TRPL spectrum)
  • b : Start time (For time-dependent solver)
  • c : dt (For time-dependent solver)
  • d : End time (For time-dependent solver)
  • e : savenum (For time-dependent solver)
  • D : diffusion coefficient. (cm^{2}s^{-1})
  • kr : radiatvie rate constant (s^{-1})
  • knr :non-radiative rate constant (s^{-1})
  • gamma : quenching coefficient. (cm^{2}s^{-1})
  • g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1.

Example

$callexciton
5
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1

static TTA model (mode 7)


Format

$callexciton
20
7 1 1
DS DT krS knrS krT knrT kisc krisc keS khS keT khT kST gammaTS gammaTT a DrefS DrefT ES ET 

Parameter Explanation ...


Output Format
*.1DexQE
V I Sr Snr Tr Tnr Sisc Tisc KeS KhS keT khT kts Sann TSA TTA sumSQE sumTQE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

sumSQE+sumTQE should equal to 1.

Subroutine_exciton1D,