$callexciton

出自 DDCC TCAD TOOL Manual
於 2021年8月3日 (二) 13:12 由 James (對話 | 貢獻) 所做的修訂

前往: 導覽搜尋

</math>Function for calculate the exciton distribution. We usually use this equation for organic material. Behavior of exciton will follow this equation. You can see the detail in Subroutine_exciton1D.

Singlet Rate Equation: \frac{dn_{ex}^S}{dt}=D^S{\nabla}^2{n_{ex}^S(r)}-(k_{r}^S+k_{nr}^S+k_{e}^Sn+k_{h}^Sp)+n_{ex}^S(r)-\gamma{n_{ex}(r)}^2+G

Triplet Rate Equation: \frac{dn_{ex}}{dt}=D{\nabla}^2{n_{ex}(r)}-\frac{n_{ex}(r)}{\tau}-\gamma{n_{ex}(r)}^2+G


Where 

  • D is diffusion coefficient.
  • \tau is relaxation time of exciton.
  • \gamma is annihilation rate constant.
  • G is exciton generation rate.

Format

$callexciton
n
a 4 b c d f
d kr knr gamma g

Parameter Explanation

  • n : the number of tables we usually set n as 5.
  • a : The type of exciton solver mode
 1: Time-dependent triplet solver 
 123: Time-dependent triplet and singlet solver (For TADF OLEDs model)
 3: Triplet Exciton Solver (For PhOLEDs model)
 6: Singlet and Triplet Exciton Solver (For TADF OLEDs model)
 4: Triplet Exciton Solver with exciton blocking boundary 
  • b : Start time (For time-dependent solver)
  • c : dt (For time-dependent solver)
  • d : End time (For time-dependent solver)
  • e : savenum (For time-dependent solver)
  • D : diffusion coefficient. (cm^{2}s^{-1})
  • kr : radiatvie rate constant (s^{-1})
  • knr :non-radiative rate constant (s^{-1})
  • gamma : quenching coefficient. (cm^{2}s^{-1})
  • g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1.

Example

$callexciton
5
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1

static TTA model (mode 7)


Format

$callexciton
20
7 1 1
DS DT krS knrS krT knrT kisc krisc keS khS keT khT kST gammaTS gammaTT a DrefS DrefT ES ET 

Parameter Explanation ...

Subroutine_exciton1D,