檢視 $callexciton 的原始碼
←
$callexciton
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
使用者
您可以檢視並複製此頁面的原始碼。
</math>Function for calculate the exciton distribution. We usually use this equation for organic material. Behavior of exciton will follow this equation. You can see the detail in [[Subroutine_exciton1D]]. Singlet Rate Equation: <math>\frac{S}{dt}=D^S{\nabla}^2{S}-(k_{r}^S+k_{nr}^S+k_{e}^Sn+k_{h}^Sp+k_{TS}T)n^S+\alpha\frac{\gamma_{TS}}{2}{T}^2+G_{S}</math> Triplet Rate Equation: <math>\frac{T}{dt}=D^S{\nabla}^2{T}-(k_{r}^T+k_{nr}^T+k_{e}^Tn+k_{h}^Tp)T-\gamma_{TS}T^2-\frac{\gamma_{TT}}{2}{T}^2+G_{T}</math> '''<big><big>Physical Mechanics</big></big>'''<br /> <big>1. Exciton Diffusion: <math>D^S{\nabla}^2{n_{ex}}</math></big> <big>2. Exciton Quenching: <math>(k_{r}+k_{nr})n_{ex}</math></big> Where * <math>D</math> is diffusion coefficient. * <math>\tau</math> is relaxation time of exciton. * <math>\gamma</math> is annihilation rate constant. * <math>G</math> is exciton generation rate. '''<big><big>Format</big></big>'''<br /> $callexciton n a 4 b c d f d kr knr gamma g<br /> '''<big><big>Parameter Explanation</big></big>''' * n : the number of tables we usually set n as 5. * a : The type of exciton solver mode 1: Time-dependent triplet solver 123: Time-dependent triplet and singlet solver (For TADF OLEDs model) 3: Triplet Exciton Solver (For PhOLEDs model) 6: Singlet and Triplet Exciton Solver (For TADF OLEDs model) 4: Triplet Exciton Solver with exciton blocking boundary 7: Singlet-Triplet Exciton Solver (For TTF/TADF OLEDs) 71: Time-dependent singlet-triplet exciton solver with pumping time (For TTF/TADF OLEDs) 711: Time-dependent singlet-triplet exciton solver (For TTF/TADF's TrEL and TRPL spectrum) * b : Start time (For time-dependent solver) * c : dt (For time-dependent solver) * d : End time (For time-dependent solver) * e : savenum (For time-dependent solver) * D : diffusion coefficient. <math>(cm^{2}s^{-1})</math> * kr : radiatvie rate constant <math>(s^{-1})</math> * knr :non-radiative rate constant <math>(s^{-1})</math> * gamma : quenching coefficient. <math>(cm^{2}s^{-1})</math> * g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1. <big>'''<big>Example</big>'''</big> <br /> $callexciton 5 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 <big>'''<big>static TTA model (mode 7)</big>'''</big> <br /> '''<big><big>Format</big></big>'''<br /> $callexciton 20 7 1 1 DS DT krS knrS krT knrT kisc krisc keS khS keT khT kST gammaTS gammaTT a DrefS DrefT ES ET <br /> '''<big><big>Parameter Explanation</big></big>''' ... <big>'''<big>Output Format</big>'''</big> <br /> '''<big><big>*.1DexQE</big></big>'''<br /> V I Sr Snr Tr Tnr Sisc Tisc KeS KhS keT khT kts Sann TSA TTA sumSQE sumTQE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 sumSQE+sumTQE should equal to 1. [[Subroutine_exciton1D]],
返回至
$callexciton
。
導覽選單
個人工具
登入
命名空間
頁面
討論
變體
檢視
閱讀
檢視原始碼
檢視歷史
更多
搜尋
導覽
首頁
最近變更
隨機頁面
說明
工具
連結至此的頁面
相關變更
特殊頁面
頁面資訊