檢視 $Withionmove 的原始碼
←
$Withionmove
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
使用者
您可以檢視並複製此頁面的原始碼。
When the system has ion to perform as drift-diffusion equations, we solve the time dependent drift-diffusion for slow ion move simulation. Since the ion moves may not be governed fermi-level concept. We simply treat is a tradiational drift-diffusion equations. <br> <math> \frac{\partial M_{ion}}{\partial t} = \nabla \left( (q_{sign}) e\mu M_{ion} \vec{E} - q D_{M} \nabla M_{ion} \right) + G*n(r) - R*M_{ion} </math> Ideally, the ion density is given by initial setting. The total ion number should be fixed. The program is aim to model multi-ions drift-diffusion. The command is as following. $Withionmove <math> N_{sweep} </math> <math> N_{output}</math> Sweep_type_1 <math>T_{1,stop}</math> <math>dt_{1}</math> P1 P2 P3 P4 P5 ... Sweep_type_1 <math>T_{2,stop}</math> <math>dt_{2}</math> P1 P2 P3 P4 P5 .. ... ... Sweep_type_N_{sweep <math>T_{N_{sweep},stop}</math> <math>dT_{M_{sweep}}</math> P1 P2 P3 P4 P5 .. <math> N_{ions} ~~ q_{sign,1} ~~ q_{sign,2} ~~ q_{sign,3} ....~~ q_{sign,N_{ions}} </math> <math> P_{type,1} ~~ M_{ions,1}~~ \mu </math> p3 p4 Parameters of the 1 layer <math> P_{type,2} ~~ M_{ions,2}~~ \mu </math> p3 p4 Parameters of the 2 layer <math> P_{type,3} ~~ M_{ions,3}~~ \mu </math> p3 p4 Parameters of the 3 layer .... ..... <math> P_{type,N} ~~ M_{ions,N} \mu </math> p3 p4 Parameters of the [[$totalregion]] layer <math> N_{sweep} </math>: The number of runs for the time step <math> N_{output}</math>: The number of output results for each run Sweep_type: 1: constant voltage, P1 to P5 is not used 2: Sweep Vg during this time period P1=Vgstart, P2=Vgend, P3=swdt of each step (step Number= <math>T_{1,stop}/swdt</math> 3: Sweep Vd during this time period P1=Vdstart, P2=Vdend, P3=swdt of each step 4,5,6.... leave for future use <math>T_{1,stop}</math> : The time for the first run. <math>T_{2,stop}</math>The time for the 2nd run. <math>dt_{1}</math> is the <math>\delta t</math> for each sweep. <math> N_{ions} </math> How many ions are considered. If we only want to consider 1 negative ion,we can put 1 <math> q_{sign} </math> The sign of ions. only accept <math> \pm 1.0 </math> For example: Consider 2 ions, 1st is negative charges, 2nd is positive charges, total 5 Regions we can $Withionmove 3 1000 1 1.00 1.0d-4 3 1.00 1.0d-4 0.0 1.0 0.02 1 1.00 1.0d-4 2 -1.0 1.0 1 0.0e17 0.0 0.0e17 0.0 1 1.0e17 1.0e-11 2.0e17 1.0e-12 1 1.0e17 1.0e-11 2.0e17 1.0e-12 1 1.0e17 1.0e-11 2.0e17 1.0e-12 1 1.0e17 1.0e-11 2.0e17 1.0e-12 <math>P_{type,1}</math> is the parameter type: it depends on ion number <math> N_{ions}</math> 1: <math> M_{ions,1} ~~~\mu </math>, <math> M_{ions,2} ~~~\mu </math>,........ <math> M_{ions,N_{ions}}, ~~~\mu_{N_{ions}}</math> 2: <math> M_{ions,1} ~~~\mu ~ D_{M}</math>, <math> M_{ions,2} ~~~\mu~~D_{M} </math>,........ <math> M_{ions,N_{ions}}, ~~~\mu_{N_{ions}}~~ D_{M}</math> 3: <math> M_{ions,1} ~~~\mu ~ ~~ R ~~G </math>, <math> M_{ions,2} ~~~\mu ~~ R_{2} ~~G_{2} </math>,........ <math> M_{ions,N_{ions}}, ~~~\mu_{N_{ions}}~~ ~~ R_{N} ~~G_{N}</math> 4: <math> M_{ions,1} ~~~\mu ~ D_{M} ~~ R ~~G </math>, <math> M_{ions,2} ~~~\mu~~D_{M} ~~ R_{2} ~~G_{2} </math>,........ <math> M_{ions,N_{ions}}, ~~~\mu_{N_{ions}}~~ D_{M} ~~ R_{N} ~~G_{N}</math> 5: <math> M_{ions,1} ~~~\mu ~ ~~ R ~~G </math>, <math> M_{ions,2} ~~~\mu ~~ R_{2} ~~G_{2} </math>,........ <math> M_{ions,N_{ions}}, ~~~\mu_{N_{ions}}~~ ~~ R_{N} ~~G_{N}</math> <math>P_{type,1}: </math> <math>P_{type,1} = 1 </math> When type 1 is chosen, we only put mobility <math> \mu </math>, and the diffusion coefficient <math> D_{M} </math> is calculated with Einstein relation, where <math> D_{M} = \mu k_{B} T / q</math> <math>P_{type} = 2 </math> When type 2 is chosen, the diffusion coefficient is given by input <math>P_{type} = 3 </math> For type==3, the ion mobility, quench term for R, Generation term for G is provided. <math> D_{M} = \mu k_{B} T / q</math> <math>P_{type} = 4 </math> For type==4, the ion mobility, diffusion coefficients, quench term for R, Generation term for G is provided. <math>P_{type} = 5 </math> For type==5, the ion mobility, quench term for R, Generation term for G is provided. <math> D_{M} = \mu k_{B} T / q</math> The initial ion density is provided by traps in the steady state calculation. <br>'''<big><big>The $Withionmove setting in GUI interface is here</big></big>''' <br> 1. After setting up the general structure, press '''Additional Functions'''.<br> 2. Check the box for '''Ion diffusion''' and press it to load the setting fields.<br> 3. Press '''Edit the parameters''' and enter the value for each region, or we can input them directly in the fields on the right. There are 5 parameter types.<br> [[檔案:2D_Withionmove_fig1.jpg|1200px]]<br><br> [[檔案:2D_Withionmove_fig2.jpg|1200px]]<br><br> 4. Press '''Add time sweep''' and fill in the fields for related setting. There are 3 Sweep time types.<br> [[檔案:2D_Withionmove_fig3.jpg|1200px]]<br><br> [[檔案:2D_Withionmove_fig4.jpg|1200px]]<br><br> 5. Fill in these fields as needed!<br> [[檔案:2D_Withionmove_fig5.jpg|1200px]]<br><br> See related commands <br> Related commands: [[$Withionmove]] [[$IonMovewithPoisson]] [[*.time_ion]]
返回至
$Withionmove
。
導覽選單
個人工具
登入
命名空間
頁面
討論
變體
檢視
閱讀
檢視原始碼
檢視歷史
更多
搜尋
導覽
首頁
最近變更
隨機頁面
說明
工具
連結至此的頁面
相關變更
特殊頁面
頁面資訊