檢視 Solvetimestep2D 的原始碼
←
Solvetimestep2D
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
使用者
您可以檢視並複製此頁面的原始碼。
$solvetimestep2D is a command for solving the transient behavior of the device. The format is $solvetimestep2D number_of_different_steps(Nt) steptype contact_type <math>\delta t ~~ t_{total}</math> par1 par2 par3 par4 .... steptype contact_type <math>\delta t ~~ t_{total}</math> par1 par2 par3 par4 .... ... steptype contact_type <math>\delta t ~~ t_{total}</math> par1 par2 par3 par4 .... repeat Nt times The number of parameters depeding on step type. Now we have 3 step types <br> Steptype = 1: <br> <math>\delta t,~~ t_{total},~~ vg_0 </math><br> <math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math><br> Steptype = 2: <br> <math>\delta t,~~ t_{total},~~ vg_0 ,~~ A_{0} ,~~ \omega,~~ c_{0} </math><br> <math> vg=vg_{0} + A_{0} \times sin\left( 2\pi \omega t + c_0 \right) </math><br> Steptype = 3: <br> <math>\delta t, ~~t_{total},~~ vg_0 ,~~ A_{0} ,~~ \omega ,~~ c_{0} </math><br> <math> vg=vg_{0} + int(A_{0} \times sin\left( 2\pi \omega t + c_0 \right)) </math><br> contact_type 2: gate 3: source 4: drain Steptype = 4: <br> <math>\delta t,~~ t_{total},~~ vg_0 </math><br> <math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = system generation at t<0 and generation =0 for t> 0 <br> Steptype = 5: <br> <math>\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}</math><br> <math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = system generation at t<0 generation = gen(system)*<math> (0.5+0.5*cos (2\pi \omega t + c_{0})) </math> <br> Steptype = 6: <br> <math>\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}</math><br> <math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = system generation at t<0 generation = gen(system)*<math> Int(0.5+0.5*cos (2\pi \omega t + c_{0})) </math> <br> Steptype = 7: <br> <math>\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}</math><br> <math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = 0 at t<0 (Force Steady state to be 0), generation = gen(system)*<math> (0.5+0.5*cos (2\pi \omega t + c_{0})) </math> <br> Steptype = 8: <br> <math>\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}</math><br> <math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = 0 at t<0 (Force Steady state to be 0), generation =gen(system)*<math> Int(0.5+0.5*cos (2\pi \omega t + c_{0})) </math> <br> For example: <br> $solvetimestep2D 2 2 2 1.0e-10 1.0e-6 3.00 0.1 1.0e6 0.0 2 4 1.0e-10 1.0e-6 3.00 0.1 1.0e6 0.0 <math> vg=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t \right) </math><br> <math> vd=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t \right) </math><br> <br>'''<big><big>The $Solvetimestep2D setting in GUI interface is here</big></big>''' <br> 1. Press '''Time Dependent module''', check the box and press '''Add new sweep modes'''.<br> 2. Fill in the fields as needed!<br> [[檔案:2D_Solvetimestep2D_fig1.jpg|1200px]]<br> [[檔案:2D_Solvetimestep2D_fig2.jpg|1200px]]<br> related:<br> $[[savetimestep2D]]
返回至
Solvetimestep2D
。
導覽選單
個人工具
登入
命名空間
頁面
討論
變體
檢視
閱讀
檢視原始碼
檢視歷史
更多
搜尋
導覽
首頁
最近變更
隨機頁面
說明
工具
連結至此的頁面
相關變更
特殊頁面
頁面資訊