"$MaterialParameter" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
(Related commands)
行 1: 行 1:
 
=='''Format'''==
 
=='''Format'''==
 
$MaterialParameter
 
$MaterialParameter
''int fp'' <font color=green>// where ''int'' is an integer, and ''fp'' is an floating point.</font>
 
  +
''type<sub>dis</sub> N ε<sub>r,∞</sub> μ<sub>r</sub> σ<sub>E</sub> σ<sub>H</sub>''
  +
''par<sub>1</sub>(1) par<sub>1</sub>(2) par<sub>1</sub>(3) par<sub>1</sub>(4)''
  +
''par<sub>2</sub>(1) par<sub>2</sub>(2) par<sub>2</sub>(3) par<sub>2</sub>(4)''
  +
. . . .
  +
. . . .
  +
. . . .
  +
''par<sub>p</sub>(1) par<sub>p</sub>(2) par<sub>p</sub>(3) par<sub>p</sub>(4)''
  +
. . . .
  +
. . . .
  +
. . . .
  +
''par<sub>N</sub>(1) par<sub>N</sub>(2) par<sub>N</sub>(3) par<sub>N</sub>(4)'' <font color=green>// where ''type<sub>dis</sub>'' and ''N'' are integers, but the others are floating points.</font>
   
 
<font size=3>
 
<font size=3>
obj%disper(i),obj%npole(i),obj%eps_inf(i),obj%mur(i),obj%sigE(i),obj%sigH(i) <br>
 
  +
Refer to Chap. 9 at p.353 - p.368.<br>
pole(i)%par(:,j) where j=1~4
 
  +
''type<sub>dis</sub>'' means the type of dispersive model. ''N'' means the number of poles in this material. ''ε<sub>r,∞</sub>'' is the relative permittivity at infinite frequency, ''μ<sub>r</sub>'' is relative permeability, ''σ<sub>E</sub>'' is electric conductivity, and ''σ<sub>H</sub>'' is equivalent magnetic loss, respectively.
 
</font>
 
</font>
  +
  +
{| class=wikitable style="text-align: center
  +
|+
  +
|-
  +
|| Models || ''type<sub>dis</sub>'' || par<sub>p</sub>(1) || par<sub>p</sub>(2) || par<sub>p</sub>(3) || par<sub>p</sub>(4)
  +
|-
  +
|| non-dispersive || 0 || 0 || 0 || 0 || 0
  +
|-
  +
|| Debye || 1 || ε<sub>s,p</sub> || ε<sub>∞,p</sub> || τ<sub>p</sub> || 0
  +
|-
  +
|| Lorentz || 2 || ε<sub>s,p</sub> || ε<sub>∞,p</sub> || ω<sub>p</sub> || δ<sub>p</sub>
  +
|-
  +
|| Drude || 3 || ω<sub>i</sub> || γ<sub>p</sub> || 0 || 0
  +
|}
  +
  +
<math>\varepsilon(\omega) = \varepsilon_\infty + \sum_{p=1}^P \chi_p(\omega)</math><br>
  +
  +
<font size=4>Debye model: </font><math>\chi_p(\omega) = \frac{(\varepsilon_{s,p}-\varepsilon_{\infty,p})}{1+j\omega\tau_p}</math><br><br>
  +
<font size=4>Lorentz model: </font><math>\chi_p(\omega) = \frac{(\varepsilon_{s,p}-\varepsilon_{\infty,p})\omega_p^2}{\omega_p^2+2j\omega\delta_p-\omega^2}</math><br><br>
  +
<font size=4>Drude model: </font><math>\chi_p(\omega) = -\frac{\omega_p^2}{\omega^2-j\omega\gamma_p}</math><br><br>
  +
   
 
=='''Example'''==
 
=='''Example'''==
  +
$NumberofObject
  +
1
 
$MaterialParameter
 
$MaterialParameter
 
2 3 10 1 0 0
 
2 3 10 1 0 0
行 14: 行 47:
 
10 7 2.5133e15 2e14
 
10 7 2.5133e15 2e14
 
10 7 3.7699e15 3e14
 
10 7 3.7699e15 3e14
 
This means the program has 2 objects in the simulation.
 
   
   

於 2018年7月16日 (一) 13:06 的修訂

Format

$MaterialParameter
 typedis       N         εr,∞          μr          σE          σH
 par1(1)    par1(2)    par1(3)    par1(4)
 par2(1)    par2(2)    par2(3)    par2(4)
   .          .          .          .
   .          .          .          .
   .          .          .          .
 parp(1)    parp(2)    parp(3)    parp(4)
   .          .          .          .
   .          .          .          .
   .          .          .          .
 parN(1)    parN(2)    parN(3)    parN(4)                // where typedis and N are integers, but the others are floating points.

Refer to Chap. 9 at p.353 - p.368.
typedis means the type of dispersive model. N means the number of poles in this material. εr,∞ is the relative permittivity at infinite frequency, μr is relative permeability, σE is electric conductivity, and σH is equivalent magnetic loss, respectively.

Models typedis parp(1) parp(2) parp(3) parp(4)
non-dispersive 0 0 0 0 0
Debye 1 εs,p ε∞,p τp 0
Lorentz 2 εs,p ε∞,p ωp δp
Drude 3 ωi γp 0 0

\varepsilon(\omega) = \varepsilon_\infty + \sum_{p=1}^P \chi_p(\omega)

Debye model: \chi_p(\omega) = \frac{(\varepsilon_{s,p}-\varepsilon_{\infty,p})}{1+j\omega\tau_p}

Lorentz model: \chi_p(\omega) = \frac{(\varepsilon_{s,p}-\varepsilon_{\infty,p})\omega_p^2}{\omega_p^2+2j\omega\delta_p-\omega^2}

Drude model: \chi_p(\omega) = -\frac{\omega_p^2}{\omega^2-j\omega\gamma_p}


Example

$NumberofObject
 1
$MaterialParameter
 2 3 10 1 0 0
 10 7 1.2566e15 1e14
 10 7 2.5133e15 2e14
 10 7 3.7699e15 3e14


Related commands

Input file 1: $NumberofObject, $MaterialStructure
Input file 2: $Backgroundparameter