「$MaterialParameter」:修訂間差異

出自DDCC TCAD TOOL Manual
跳至導覽 跳至搜尋
Mike留言 | 貢獻
Mike留言 | 貢獻
 
(未顯示同一使用者於中間所作的 8 次修訂)
第1行: 第1行:
=='''Format'''==
=='''Format'''==
  $MaterialParameter
  $MaterialParameter
   ''int   fp''                <font color=green>// where ''int'' is an integer, and ''fp'' is an floating point.</font>
   ''type<sub>dis</sub>      N        ε<sub>r,∞</sub>        μ<sub>r</sub>          σ<sub>E</sub>          σ<sub>H</sub>''
  ''par<sub>1</sub>(1)    par<sub>1</sub>(2)    par<sub>1</sub>(3)''
  ''par<sub>2</sub>(1)    par<sub>2</sub>(2)    par<sub>2</sub>(3)''
    .          .          .         
    .          .          .         
    .          .          .       
  ''par<sub>p</sub>(1)    par<sub>p</sub>(2)    par<sub>p</sub>(3)''
    .          .          .         
    .          .          .         
    .          .          .         
  ''par<sub>N</sub>(1)   par<sub>N</sub>(2)    par<sub>N</sub>(3)''                <font color=green>// where ''type<sub>dis</sub>'' and ''N'' are integers, but the others are floating points.</font>


<font size=3>
<font size=3>
obj%disper(i),obj%npole(i),obj%eps_inf(i),obj%mur(i),obj%sigE(i),obj%sigH(i) <br>
Refer to Chap. 9 in p.353 - p.368.<br>
pole(i)%par(:,j) where j=1~4
''type<sub>dis</sub>'' means the type of dispersive model. <br>
''N'' means the number of poles in this material. <br>
''ε<sub>r,∞</sub>'' is the relative permittivity at infinite frequency, <br>
''μ<sub>r</sub>'' is relative permeability, <br>
''σ<sub>E</sub>'' is electric conductivity, <br>
and ''σ<sub>H</sub>'' is equivalent magnetic loss, respectively.
</font>
</font>
{| class=wikitable style="text-align: center
|+
|-
|| Models        || ''type<sub>dis</sub>'' || par<sub>p</sub>(1) || par<sub>p</sub>(2)  || par<sub>p</sub>(3)
|-
|| non-dispersive || 0                      || 0                  || 0                  || 0
|-
|| Debye          || 1                      || Δε<sub>p</sub>    || τ<sub>p</sub>      || 0 
|-
|| Lorentz        || 2                      || Δε<sub>p</sub>    || ω<sub>p</sub>      || δ<sub>p</sub> 
|-
|| Drude          || 3                      || ω<sub>i</sub>      || γ<sub>p</sub>      || 0 
|}
<math>\varepsilon(\omega) = \varepsilon_\infty + \sum_{p=1}^P \chi_p(\omega)</math><br>
<font size=4>Debye model:  </font><math>\chi_p(\omega) = \frac{\Delta\varepsilon_{p}}{1+j\omega\tau_p}</math><br><br>
<font size=4>Lorentz model: </font><math>\chi_p(\omega) = \frac{\Delta\varepsilon_{p} \omega_p^2}{\omega_p^2+2j\omega\delta_p-\omega^2}</math><br><br>
<font size=4>Drude model:  </font><math>\chi_p(\omega) = -\frac{\omega_p^2}{\omega^2-j\omega\gamma_p}</math><br><br>


=='''Example'''==
=='''Example'''==
$NumberofObject
  2
  $MaterialParameter
  $MaterialParameter
   2 3 10 1 0 0
   2 3 10 1 0 0
   10 7 1.2566e15 1e14
   3 1.2566e15 1e14
   10 7 2.5133e15 2e14
   3 2.5133e15 2e14
   10 7 3.7699e15 3e14
   3 3.7699e15 3e14
 
  2 2 10 1 0 0
This means the program has 2 objects in the simulation.
  3 1.2566e15 1e14
 
  3 2.5133e15 2e14


== '''Related commands''' ==
== '''Related commands''' ==
: Input file 1: [[$NumberofObject]], [[$MaterialStructure]]
: Input file 1: [[$NumberofObject]], [[$MaterialStructure]]
: Input file 2: [[$Backgroundparameter]]
: Input file 2: [[$Backgroundparameter]]

於 2020年3月25日 (三) 07:16 的最新修訂

Format

$MaterialParameter
 typedis       N         εr,∞        μr          σE          σH
 par1(1)    par1(2)    par1(3)
 par2(1)    par2(2)    par2(3)
   .          .          .          
   .          .          .          
   .          .          .         
 parp(1)    parp(2)    parp(3)
   .          .          .          
   .          .          .          
   .          .          .          
 parN(1)    parN(2)    parN(3)                // where typedis and N are integers, but the others are floating points.

Refer to Chap. 9 in p.353 - p.368.
typedis means the type of dispersive model.
N means the number of poles in this material.
εr,∞ is the relative permittivity at infinite frequency,
μr is relative permeability,
σE is electric conductivity,
and σH is equivalent magnetic loss, respectively.

Models typedis parp(1) parp(2) parp(3)
non-dispersive 0 0 0 0
Debye 1 Δεp τp 0
Lorentz 2 Δεp ωp δp
Drude 3 ωi γp 0

ε(ω)=ε+p=1Pχp(ω)

Debye model: χp(ω)=Δεp1+jωτp

Lorentz model: χp(ω)=Δεpωp2ωp2+2jωδpω2

Drude model: χp(ω)=ωp2ω2jωγp

Example

$NumberofObject
 2
$MaterialParameter
 2 3 10 1 0 0
 3 1.2566e15 1e14
 3 2.5133e15 2e14
 3 3.7699e15 3e14
 2 2 10 1 0 0
 3 1.2566e15 1e14
 3 2.5133e15 2e14

Related commands

Input file 1: $NumberofObject, $MaterialStructure
Input file 2: $Backgroundparameter