「$callexciton」:修訂間差異

出自DDCC TCAD TOOL Manual
跳至導覽 跳至搜尋
DDCC-3D留言 | 貢獻
無編輯摘要
DDCC-3D留言 | 貢獻
無編輯摘要
第22行: 第22行:
* a : The type of exciton solver mode   
* a : The type of exciton solver mode   
   1: Time-dependent triplet solver  
   1: Time-dependent triplet solver  
   2:
   123: Time-dependent triplet and singlet solver (For TADF OLEDs model)
  3: Triplet Exciton Solver (For PhOLEDs model)
  6: Singlet and Triplet Exciton Solver (For TADF OLEDs model)
  4: Triplet Exciton Solver with exciton blocking boundary


* d : diffusion coefficient. <math>(cm^{2}s^{-1})</math>
* d : diffusion coefficient. <math>(cm^{2}s^{-1})</math>

於 2020年5月13日 (三) 11:51 的修訂

Function for calculate the exciton distribution. We usually use this equation for organic material. Behavior of exciton will follow this equation. You can see the detail in Subroutine_exciton1D.


dnexdt=D2nex(r)nex(r)τγnex(r)2+G


Where 

  • D is diffusion coefficient.
  • τ is relaxation time of exciton.
  • γ is annihilation rate constant.
  • G is exciton generation rate.

Format

$callexciton
n
a b c d f g
d kr knr gamma g

Parameter Explanation

  • n : the number of tables we usually set n as 5.
  • a : The type of exciton solver mode
 1: Time-dependent triplet solver 
 123: Time-dependent triplet and singlet solver (For TADF OLEDs model)
 3: Triplet Exciton Solver (For PhOLEDs model)
 6: Singlet and Triplet Exciton Solver (For TADF OLEDs model)
 4: Triplet Exciton Solver with exciton blocking boundary 
  • d : diffusion coefficient. (cm2s1)
  • kr : radiatvie rate constant (s1)
  • knr :non-radiative rate constant (s1)
  • gamma : quenching coefficient. (cm2s1)
  • g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1.

Example

$callexciton
5
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1

Subroutine_exciton1D,