"$callexciton" 修訂間的差異
(未顯示同一使用者於中間所作的 41 次修訂) | |||
行 2: | 行 2: | ||
Singlet Rate Equation: |
Singlet Rate Equation: |
||
− | <math>\frac{ |
+ | <math>\frac{S}{dt}=D^S{\nabla}^2{S}-(k_{r}^S+k_{nr}^S+k_{e}^Sn+k_{h}^Sp+k_{TS}T)S+\alpha\frac{\gamma_{TS}}{2}{T}^2+G_{S}</math> |
Triplet Rate Equation: |
Triplet Rate Equation: |
||
− | <math>\frac{ |
+ | <math>\frac{T}{dt}=D^S{\nabla}^2{T}-(k_{r}^T+k_{nr}^T+k_{e}^Tn+k_{h}^Tp)T-\gamma_{TS}T^2-\frac{\gamma_{TT}}{2}{T}^2+G_{T}</math> |
+ | '''<big><big>Physical Mechanics</big></big>'''<br /> |
||
+ | <big>1. Exciton Diffusion: <math>D^S{\nabla}^2{n_{ex}}</math></big> |
||
+ | |||
+ | <big>2. Exciton Quenching: <math>(k_{r}^{S,T}+k_{nr}^{S,T})S/T, [{S_1/T}_{1}\rightarrow {S_0/T}_{0}]</math></big> |
||
+ | |||
+ | <big>3. Singlet-Polaron Quenching: <math>(k_{e}^Sn+k_{h}^Sp)S, [S_1+n/p\rightarrow S_0+n/p^{*}]</math></big> |
||
+ | |||
+ | <big>4. Triplet-Polaron Quenching: <math>(k_{e}^Tn+k_{h}^Tp)T, [T_1+n/p\rightarrow S_0+n/p^{*}]</math></big> |
||
+ | |||
+ | <big>5. Triplet-Singlet Quenching: <math>k_{TS}TS, [S_1+T_1\rightarrow S_0+T_1]</math></big> |
||
+ | |||
+ | <big>6. Triplet-Triplet Annihilation: <math>\gamma_{TS}T^2+\frac{\gamma_{TT}}{2}{T}^2, [T_1+T_1\rightarrow S_0+T_1]\&[T_1+T_1\rightarrow S_1+S_0]</math></big> |
||
+ | |||
+ | <big>7. Triplet-Triplet Fusion: <math>\alpha\frac{\gamma_{TS}}{2}{T}^2, [T_1+T_1\rightarrow S_1+S_0]</math></big> |
||
Where |
Where |
||
行 29: | 行 43: | ||
6: Singlet and Triplet Exciton Solver (For TADF OLEDs model) |
6: Singlet and Triplet Exciton Solver (For TADF OLEDs model) |
||
4: Triplet Exciton Solver with exciton blocking boundary |
4: Triplet Exciton Solver with exciton blocking boundary |
||
+ | 7: Singlet-Triplet Exciton Solver (For TTF/TADF OLEDs) |
||
+ | 71: Time-dependent singlet-triplet exciton solver with pumping time (For TTF/TADF OLEDs) |
||
+ | 711: Time-dependent singlet-triplet exciton solver (For TTF/TADF's TrEL and TRPL spectrum) |
||
+ | |||
* b : Start time (For time-dependent solver) |
* b : Start time (For time-dependent solver) |
||
* c : dt (For time-dependent solver) |
* c : dt (For time-dependent solver) |
||
行 60: | 行 78: | ||
'''<big><big>Parameter Explanation</big></big>''' |
'''<big><big>Parameter Explanation</big></big>''' |
||
... |
... |
||
+ | |||
+ | |||
+ | <big>'''<big>Output Format</big>'''</big> <br /> |
||
+ | '''<big><big>*.1DexQE</big></big>'''<br /> |
||
+ | V I Sr Snr Tr Tnr Sisc Tisc KeS KhS keT khT kts Sann TSA TTA sumSQE sumTQE |
||
+ | |||
+ | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
||
+ | |||
+ | sumSQE+sumTQE should equal to 1. |
||
[[Subroutine_exciton1D]], |
[[Subroutine_exciton1D]], |
於 2021年8月17日 (二) 10:56 的最新修訂
</math>Function for calculate the exciton distribution. We usually use this equation for organic material. Behavior of exciton will follow this equation. You can see the detail in Subroutine_exciton1D.
Singlet Rate Equation:
Triplet Rate Equation:
Physical Mechanics
1. Exciton Diffusion:
2. Exciton Quenching:
3. Singlet-Polaron Quenching:
4. Triplet-Polaron Quenching:
5. Triplet-Singlet Quenching:
6. Triplet-Triplet Annihilation:
7. Triplet-Triplet Fusion:
Where
- is diffusion coefficient.
- is relaxation time of exciton.
- is annihilation rate constant.
- is exciton generation rate.
Format
$callexciton n a 4 b c d f d kr knr gamma g
Parameter Explanation
- n : the number of tables we usually set n as 5.
- a : The type of exciton solver mode
1: Time-dependent triplet solver 123: Time-dependent triplet and singlet solver (For TADF OLEDs model) 3: Triplet Exciton Solver (For PhOLEDs model) 6: Singlet and Triplet Exciton Solver (For TADF OLEDs model) 4: Triplet Exciton Solver with exciton blocking boundary 7: Singlet-Triplet Exciton Solver (For TTF/TADF OLEDs) 71: Time-dependent singlet-triplet exciton solver with pumping time (For TTF/TADF OLEDs) 711: Time-dependent singlet-triplet exciton solver (For TTF/TADF's TrEL and TRPL spectrum)
- b : Start time (For time-dependent solver)
- c : dt (For time-dependent solver)
- d : End time (For time-dependent solver)
- e : savenum (For time-dependent solver)
- D : diffusion coefficient.
- kr : radiatvie rate constant
- knr :non-radiative rate constant
- gamma : quenching coefficient.
- g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1.
Example
$callexciton 5 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1
static TTA model (mode 7)
Format
$callexciton 20 7 1 1 DS DT krS knrS krT knrT kisc krisc keS khS keT khT kST gammaTS gammaTT a DrefS DrefT ES ET
Parameter Explanation ...
Output Format
*.1DexQE
V I Sr Snr Tr Tnr Sisc Tisc KeS KhS keT khT kts Sann TSA TTA sumSQE sumTQE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
sumSQE+sumTQE should equal to 1.