「$1Daddefmas」:修訂間差異

出自DDCC TCAD TOOL Manual
跳至導覽 跳至搜尋
Yrwu留言 | 貢獻
無編輯摘要
Yrwu留言 | 貢獻
無編輯摘要
第3行: 第3行:
  $1Daddefmas
  $1Daddefmas
  I_effective_type  
  I_effective_type  
  <math> m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~N_{valley}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y}~~N_{valley} ~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y}~~N_{valley}..</math>
  <math> m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~N_{valley}~~\Delta E_{hh}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y}~~N_{valley}~~\Delta E_{lh}~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y}~~N_{valley}~~\Delta E_{c1}..</math>
  <math> m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~N_{valley}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y}~~N_{valley} ~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y}~~N_{valley}..</math>
  <math> m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~N_{valley}~~\Delta E_{hh}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y}~~N_{valley}~~\Delta E_{lh}~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y}~~N_{valley}..~~\Delta E_{c1}</math>
  ... to N layers
  ... to N layers
   
   
  I_effective_type is the input type. The default should be 1. The typical semiconductor material has heavy hole, light hole, and electron effective mass of direct band. The type 1 is used.  
  I_effective_type is the input type. The default should be 1. The typical semiconductor material has a heavy hole, a light hole, and electron effective mass of a direct band. The type 1 is used.  
  For I_effective_type= 1, <math> m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~N_{valley}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y} ~~N_{valley} ~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y}~~ N_{valley}..</math>
  For I_effective_type= 1, m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~N_{valley}~~\Delta E_{hh}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y}~~N_{valley}~~\Delta E_{lh}~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y}~~N_{valley}~~\Delta E_{c1}....</math>
  For I_effective_type= 2, <math> m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~N_{valley}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y} ~~N_{valley} ~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y}~~ N_{valley}~~m_{e,z,2nd valley} ~~ m_{e,x,2nd valley}~~ m_{hh,y,2nd valley}~~ N_{valley}~~ \Delta E_{2 to 1}</math>
  For I_effective_type= 2, <math> m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~N_{valley}~~\Delta E_{hh}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y}~~N_{valley}~~\Delta E_{lh}~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y}~~N_{valley}~~\Delta E_{c1} ~~m_{e,z,2nd} ~~ m_{e,x,2nd}~~ m_{e,y,2nd}~~N_{valley,2nd}~~\Delta E_{c2}....</math>


  Note: type 2 is under testing.  
  Note: For type 2, it is designed for direct and indirect calculation in landscape cases.  


  z is the calculation direction of 1D program. If there is a QW, z is the confined direction in the 1D program. <math>N_{valley}</math> is the valley number of electrons
  z is the calculation direction of 1D program. If there is a QW, z is the confined direction in the 1D program. <math>N_{valley}</math> is the valley number of electrons
第19行: 第19行:
   $1Daddefmas
   $1Daddefmas
   1  
   1  
   1.8 1.8 1.8 1 0.17 0.17 0.17 1 0.21 0.2 0.2 1
   1.8 1.8 1.8 1 0.0 0.17 0.17 0.17 1 0.0 0.21 0.2 0.2 1 0.0
   1.8 1.8 1.8 1 0.17 0.17 0.17 1 0.21 0.2 0.2 1
  1.8 1.8 1.8 1 0.0 0.17 0.17 0.17 1 0.0 0.21 0.2 0.2 1 0.0
   1.8 1.8 1.8 1 0.17 0.17 0.17 1 0.21 0.2 0.2 1  
  1.8 1.8 1.8 1 0.0 0.17 0.17 0.17 1 0.0 0.21 0.2 0.2 1 0.0
  .... to N layers
 
Example II:  For a material like AlGaN effective mass for HH is 1.8, LH=0.17, and the electron is 0.21 in the growth direction and 0.2 in the x,y direction. If it is under strain and HH shifts to the top first band by <math>\Delta E_{hh} = 0.2 eV</math> (move up use positive sign),
 
  $1Daddefmas
  1
  1.8 1.8 1.8 1 '''0.2''' 0.17 0.17 0.17 1 0.0 0.21 0.2 0.2 1 0.0
   1.8 1.8 1.8 1 '''0.2''' 0.17 0.17 0.17 1 0.0 0.21 0.2 0.2 1 0.0
   1.8 1.8 1.8 1 '''0.2''' 0.17 0.17 0.17 1 0.0 0.21 0.2 0.2 1 0.0
   .... to N layers
   .... to N layers


第27行: 第36行:
   $1Daddefmas
   $1Daddefmas
   1  
   1  
   1.4 0.7 0.9 1 0.17 0.17 0.17 1 0.3 0.1 0.1 3
   1.4 0.7 0.9 1 0.0 0.17 0.17 0.17 1 0.0 0.3 0.1 0.1 3 0.0
   1.4 0.7 0.9 1 0.17 0.17 0.17 1 0.3 0.1 0.1 3
   1.4 0.7 0.9 1 0.0 0.17 0.17 0.17 1 0.0 0.3 0.1 0.1 3 0.0
   1.4 0.7 0.9 1 0.17 0.17 0.17 1 0.3 0.1 0.1 3  
   1.4 0.7 0.9 1 0.0 0.17 0.17 0.17 1 0.0 0.3 0.1 0.1 3 0.0
   .... to N layers
   .... to N layers


Actually, the simulation program, it mainly uses the density of state effective mass. The different direction's effective mass will be put together as  
Actually, the simulation program mainly uses the density of state effective mass. The different direction's effective mass will be put together as  
  For conduction band:
  For conduction band:
  <math>  m_{dos}^{*} = (N_{valley})^{2/3} ( m_x m_y m_z)^{1/3} </math>
  <math>  m_{dos}^{*} = (N_{valley})^{2/3} ( m_x m_y m_z)^{1/3} </math>
第47行: 第56行:
   <math>  N_{DOS}(E) = \frac{m_{2d,dos}^{*}}{\pi\hbar^{2}}</math>
   <math>  N_{DOS}(E) = \frac{m_{2d,dos}^{*}}{\pi\hbar^{2}}</math>


For structures like Si, it may have some problems when Schrodinger solver is used. Since Si has six valleys with effective masses in different directions (<math>m_{l}=0.98 m_{0}, m_{l}=0.19 m_{0}</math>, if we do not solve the Schrodinger equations, we can simply use m_e =1.08 m0 in the $1Dparameter. Or here, we can set  
For structures like Si, it may have some problems when the Schrodinger solver is used. Since Si has six valleys with effective masses in different directions (<math>m_{l}=0.98 m_{0}, m_{l}=0.19 m_{0}</math>, if we do not solve the Schrodinger equations, we can simply use m_e =1.08 m0 in the $1Dparameter. Or here, we can set  
   $1Daddefmas
   $1Daddefmas
   1  
   1  
   0.49 0.49 0.49 1 0.16 0.16 0.16 1 0.98 0.19 0.19 6  
   0.49 0.49 0.49 1 0.0 0.16 0.16 0.16 1 0.0 '''0.98 0.19 0.19 6 0.0'''


For the Schrodinger solver, after quesnum confine effects, we can expect 2 confinement in the electron effective mass, the lower valleys are z valleys with mz=0.98, N=2. We can neglect the high valleys and only 2 valleys are left as ground states. The setting would be  
For the Schrodinger solver, after quantum confined effects, we can expect two confinement in the electron effective mass, the lower valleys are z valleys with mz=0.98, N=2. We can neglect the high valleys, and only two valleys are left as ground states. The setting would be  


   $1Daddefmas
   $1Daddefmas
   1  
   1  
   0.49 0.49 0.49 0.16 0.16 0.16 0.98 0.19 0.19 2
   0.49 0.49 0.49 0.16 0.0 0.16 0.16 0.98 0.0 0.19 0.19 2 0.0


   <math>  m_{2d,dos}^{*} = ( m_{x} m_{y} ) ^{1/2} (N)^{1/2}= 0.19 * \sqrt{2} * m_{0} </math>
   <math>  m_{2d,dos}^{*} = ( m_{x} m_{y} ) ^{1/2} (N)^{1/2}= 0.19 * \sqrt{2} * m_{0} </math>
第64行: 第73行:
   $1Daddefmas
   $1Daddefmas
   2  
   2  
   0.49 0.49 0.49 1 0.16 0.16 0.16 1 0.98 0.19 0.19 2 0.19 0.98 0.19 4 0.0
   0.49 0.49 0.49 1 0.0 0.16 0.16 0.16 1 0.0 '''0.98 0.19 0.19 2 0.0 0.19 0.98 0.19 4 0.0'''


For unconfined conditions, it will set the mass of electron to be  
For unconfined conditions, it will set the mass of the electron to be  
   <math>  m_{dos}^{*} = \left(  (m_x m_y m_z)^{1/3})^{3/2} \times 2 +  (m_x m_y m_z)^{1/3})^{3/2}  \times 4  \right)^{2/3} </math>
   <math>  m_{dos}^{*} = \left(  (m_x m_y m_z)^{1/3})^{3/2} \times 2 +  (m_x m_y m_z)^{1/3})^{3/2}  \times 4  \right)^{2/3} </math>


第72行: 第81行:
   <math>  m_{2d,dos,1}^{*} = ( m_{x} m_{y} ) ^{1/2} (N)^{1/2}= 0.19 * \sqrt{2} * m_{0} </math>
   <math>  m_{2d,dos,1}^{*} = ( m_{x} m_{y} ) ^{1/2} (N)^{1/2}= 0.19 * \sqrt{2} * m_{0} </math>
   <math>  m_{2d,dos,2}^{*} = ( m_{x} m_{y} ) ^{1/2} (N)^{1/2}= (0.19 * 0.98)^{1/2} \sqrt{4} * m_{0} </math>
   <math>  m_{2d,dos,2}^{*} = ( m_{x} m_{y} ) ^{1/2} (N)^{1/2}= (0.19 * 0.98)^{1/2} \sqrt{4} * m_{0} </math>
For the In0.5Ga0.5P material, which has a 2nd valley (X) close to Gamma valley. In addition, the QB is usually dominated by X valley, which is an indirect bandgap. To solve Schrodinger equations, it is better to solve <math>\Gamma </math> valley and X separately. For Example, In0.5Ga0.5P is the direct bandgap X valley is above the <math>\Gamma </math> valley around 0.2eV, AlInP is the indirect bandgap, where X valley is below  <math>\Gamma </math> valley about 0.4eV. Then we can use type 2 and set the first Ec as <math>\Gamma </math> valley and the 2nd Ec as X valley. Then
  $1Daddefmas
  2
  0.49 0.49 0.49 1 0.0 0.16 0.16 0.16 1 0.0 '''0.08 0.08 0.08 1 0.0 0.98 0.19 0.19 3 0.2'''    -> InGaP
  0.49 0.49 0.49 1 0.0 0.16 0.16 0.16 1 0.0 '''0.098 0.098 0.098 1 0.4 0.94 0.21 0.21 3 0.0'''    -> AlInP

於 2023年3月11日 (六) 07:59 的修訂

$1Daddefmas   is the function to add additional effective mass information for electron and holes. In some cases, the electron's (holes) effective mass in different directions are different. Hence the new functions is to put additional information for the program to calculate. 
$1Daddefmas
I_effective_type 
mhh,zmhh,xmhh,yNvalleyΔEhhmlh,zmlh,xmlh,yNvalleyΔElhme,zme,xmhh,yNvalleyΔEc1..
mhh,zmhh,xmhh,yNvalleyΔEhhmlh,zmlh,xmlh,yNvalleyΔElhme,zme,xmhh,yNvalley..ΔEc1
... to N layers

I_effective_type is the input type. The default should be 1. The typical semiconductor material has a heavy hole, a light hole, and electron effective mass of a direct band. The type 1 is used. 
For I_effective_type= 1, m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~N_{valley}~~\Delta E_{hh}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y}~~N_{valley}~~\Delta E_{lh}~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y}~~N_{valley}~~\Delta E_{c1}....</math>
For I_effective_type= 2, mhh,zmhh,xmhh,yNvalleyΔEhhmlh,zmlh,xmlh,yNvalleyΔElhme,zme,xmhh,yNvalleyΔEc1me,z,2ndme,x,2ndme,y,2ndNvalley,2ndΔEc2....
Note: For type 2, it is designed for direct and indirect calculation in landscape cases. 
z is the calculation direction of 1D program. If there is a QW, z is the confined direction in the 1D program. Nvalley is the valley number of electrons

For example, for a material like GaN effective mass for HH is 1.8, LH=0.17, and the electron is 0.21 in the growth direction and 0.2 in the x,y direction. We set

 $1Daddefmas
 1 
 1.8 1.8 1.8 1 0.0 0.17 0.17 0.17 1 0.0 0.21 0.2 0.2 1 0.0 
 1.8 1.8 1.8 1 0.0 0.17 0.17 0.17 1 0.0 0.21 0.2 0.2 1 0.0 
 1.8 1.8 1.8 1 0.0 0.17 0.17 0.17 1 0.0 0.21 0.2 0.2 1 0.0 
 .... to N layers

Example II: For a material like AlGaN effective mass for HH is 1.8, LH=0.17, and the electron is 0.21 in the growth direction and 0.2 in the x,y direction. If it is under strain and HH shifts to the top first band by ΔEhh=0.2eV (move up use positive sign),

 $1Daddefmas
 1 
 1.8 1.8 1.8 1 0.2 0.17 0.17 0.17 1 0.0 0.21 0.2 0.2 1 0.0 
 1.8 1.8 1.8 1 0.2 0.17 0.17 0.17 1 0.0 0.21 0.2 0.2 1 0.0 
 1.8 1.8 1.8 1 0.2 0.17 0.17 0.17 1 0.0 0.21 0.2 0.2 1 0.0 
 .... to N layers

For example, for a material effective mass for HH_growth direction is 1.4 in the other two directions are 0.7 and 0.9, LH=0.17, and electron is 0.3 in the growth direction and 0.1 in the x,y direction with 3 valleys, we set

 $1Daddefmas
 1 
 1.4 0.7 0.9 1 0.0 0.17 0.17 0.17 1 0.0 0.3 0.1 0.1 3 0.0 
 1.4 0.7 0.9 1 0.0 0.17 0.17 0.17 1 0.0 0.3 0.1 0.1 3 0.0
 1.4 0.7 0.9 1 0.0 0.17 0.17 0.17 1 0.0 0.3 0.1 0.1 3 0.0 
 .... to N layers

Actually, the simulation program mainly uses the density of state effective mass. The different direction's effective mass will be put together as

For conduction band:
mdos*=(Nvalley)2/3(mxmymz)1/3
For the valence band 
 mHH,dos*=(mhh,xmhh,ymhh,z)1/3
 mLH,dos*=(mlh,xmlh,ymlh,z)1/3
 mp,dos*=(mhh,dos3/2+mhh,dos3/2)2/3

For the Schrodinger solver, it will use m_z to calculate the quantum confinement effects. The equation will solve

1mz+Vψ=Eψ

For the n2d calculation, the density of state effective mass in the 2D structures is

 m2d,dos*=(mxmy)1/2
 NDOS(E)=m2d,dos*π2

For structures like Si, it may have some problems when the Schrodinger solver is used. Since Si has six valleys with effective masses in different directions (ml=0.98m0,ml=0.19m0, if we do not solve the Schrodinger equations, we can simply use m_e =1.08 m0 in the $1Dparameter. Or here, we can set

 $1Daddefmas
 1 
 0.49 0.49 0.49 1 0.0 0.16 0.16 0.16 1 0.0 0.98 0.19 0.19 6 0.0

For the Schrodinger solver, after quantum confined effects, we can expect two confinement in the electron effective mass, the lower valleys are z valleys with mz=0.98, N=2. We can neglect the high valleys, and only two valleys are left as ground states. The setting would be

 $1Daddefmas
 1 
 0.49 0.49 0.49 0.16 0.0 0.16 0.16 0.98 0.0 0.19 0.19 2 0.0
 m2d,dos*=(mxmy)1/2(N)1/2=0.19*2*m0
 NDOS(E)=m2d,dos*π2

If we want to use type 2 to consider the second confine states, we can set ( Note x and y is undistinguished in 1D simulation program as they will be treated together)

 $1Daddefmas
 2 
 0.49 0.49 0.49 1 0.0 0.16 0.16 0.16 1 0.0 0.98 0.19 0.19 2 0.0 0.19 0.98 0.19 4 0.0

For unconfined conditions, it will set the mass of the electron to be

 mdos*=((mxmymz)1/3)3/2×2+(mxmymz)1/3)3/2×4)2/3

For the confined conditions, it will

 m2d,dos,1*=(mxmy)1/2(N)1/2=0.19*2*m0
 m2d,dos,2*=(mxmy)1/2(N)1/2=(0.19*0.98)1/24*m0

For the In0.5Ga0.5P material, which has a 2nd valley (X) close to Gamma valley. In addition, the QB is usually dominated by X valley, which is an indirect bandgap. To solve Schrodinger equations, it is better to solve Γ valley and X separately. For Example, In0.5Ga0.5P is the direct bandgap X valley is above the Γ valley around 0.2eV, AlInP is the indirect bandgap, where X valley is below Γ valley about 0.4eV. Then we can use type 2 and set the first Ec as Γ valley and the 2nd Ec as X valley. Then


 $1Daddefmas
 2 
 0.49 0.49 0.49 1 0.0 0.16 0.16 0.16 1 0.0 0.08 0.08 0.08 1 0.0 0.98 0.19 0.19 3 0.2    -> InGaP
 0.49 0.49 0.49 1 0.0 0.16 0.16 0.16 1 0.0 0.098 0.098 0.098 1 0.4 0.94 0.21 0.21 3 0.0    -> AlInP