"Solvetimestep2D" 修訂間的差異
出自 DDCC TCAD TOOL Manual
(已建立頁面,內容為 "$solvetimestep is a command for solving the transient behavior of the device. The format is $solvetimestep2D number_of_different_steps(Nt) steptype contact_type...") |
|||
(未顯示由 1 位使用者於中間所作的 11 次修訂) | |||
行 1: | 行 1: | ||
− | $ |
+ | $solvetimestep2D is a command for solving the transient behavior of the device. The format is |
$solvetimestep2D |
$solvetimestep2D |
||
行 13: | 行 13: | ||
Steptype = 1: <br> |
Steptype = 1: <br> |
||
<math>\delta t,~~ t_{total},~~ vg_0 </math><br> |
<math>\delta t,~~ t_{total},~~ vg_0 </math><br> |
||
− | vg= |
+ | <math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math><br> |
Steptype = 2: <br> |
Steptype = 2: <br> |
||
<math>\delta t,~~ t_{total},~~ vg_0 ,~~ A_{0} ,~~ \omega,~~ c_{0} </math><br> |
<math>\delta t,~~ t_{total},~~ vg_0 ,~~ A_{0} ,~~ \omega,~~ c_{0} </math><br> |
||
− | <math> vg= |
+ | <math> vg=vg_{0} + A_{0} \times sin\left( 2\pi \omega t + c_0 \right) </math><br> |
Steptype = 3: <br> |
Steptype = 3: <br> |
||
<math>\delta t, ~~t_{total},~~ vg_0 ,~~ A_{0} ,~~ \omega ,~~ c_{0} </math><br> |
<math>\delta t, ~~t_{total},~~ vg_0 ,~~ A_{0} ,~~ \omega ,~~ c_{0} </math><br> |
||
− | <math> vg= |
+ | <math> vg=vg_{0} + int(A_{0} \times sin\left( 2\pi \omega t + c_0 \right)) </math><br> |
contact_type |
contact_type |
||
行 27: | 行 27: | ||
3: source |
3: source |
||
4: drain |
4: drain |
||
+ | |||
+ | Steptype = 4: <br> |
||
+ | <math>\delta t,~~ t_{total},~~ vg_0 </math><br> |
||
+ | <math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = system generation at t<0 and generation =0 for t> 0 <br> |
||
+ | |||
+ | Steptype = 5: <br> |
||
+ | <math>\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}</math><br> |
||
+ | <math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = system generation at t<0 generation = gen(system)*<math> (0.5+0.5*cos (2\pi \omega t + c_{0})) </math> <br> |
||
+ | |||
+ | Steptype = 6: <br> |
||
+ | <math>\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}</math><br> |
||
+ | <math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = system generation at t<0 generation = gen(system)*<math> Int(0.5+0.5*cos (2\pi \omega t + c_{0})) </math> <br> |
||
+ | |||
+ | Steptype = 7: <br> |
||
+ | <math>\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}</math><br> |
||
+ | <math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = 0 at t<0 (Force Steady state to be 0), |
||
+ | generation = gen(system)*<math> (0.5+0.5*cos (2\pi \omega t + c_{0})) </math> <br> |
||
+ | |||
+ | Steptype = 8: <br> |
||
+ | <math>\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}</math><br> |
||
+ | <math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = 0 at t<0 (Force Steady state to be 0), |
||
+ | generation =gen(system)*<math> Int(0.5+0.5*cos (2\pi \omega t + c_{0})) </math> <br> |
||
+ | |||
+ | |||
For example: <br> |
For example: <br> |
||
行 36: | 行 60: | ||
<math> vg=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t \right) </math><br> |
<math> vg=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t \right) </math><br> |
||
<math> vd=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t \right) </math><br> |
<math> vd=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t \right) </math><br> |
||
+ | |||
+ | <br>'''<big><big>The $Solvetimestep2D setting in GUI interface is here</big></big>''' <br> |
||
+ | 1. Press '''Time Dependent module''', check the box and press '''Add new sweep modes'''.<br> |
||
+ | 2. Fill in the fields as needed!<br> |
||
+ | [[檔案:2D_Solvetimestep2D_fig1.jpg|1200px]]<br> |
||
+ | [[檔案:2D_Solvetimestep2D_fig2.jpg|1200px]]<br> |
||
+ | |||
+ | |||
+ | related:<br> |
||
+ | $[[savetimestep2D]] |
於 2024年11月20日 (三) 19:43 的最新修訂
$solvetimestep2D is a command for solving the transient behavior of the device. The format is
$solvetimestep2D number_of_different_steps(Nt) steptype contact_type par1 par2 par3 par4 .... steptype contact_type par1 par2 par3 par4 .... ... steptype contact_type par1 par2 par3 par4 .... repeat Nt times
The number of parameters depeding on step type. Now we have 3 step types
Steptype = 1:
for t<0, for t>0, vg=
Steptype = 2:
Steptype = 3:
contact_type
2: gate 3: source 4: drain
Steptype = 4:
for t<0, for t>0, vg= , generation = system generation at t<0 and generation =0 for t> 0
Steptype = 5:
for t<0, for t>0, vg= , generation = system generation at t<0 generation = gen(system)*
Steptype = 6:
for t<0, for t>0, vg= , generation = system generation at t<0 generation = gen(system)*
Steptype = 7:
for t<0, for t>0, vg= , generation = 0 at t<0 (Force Steady state to be 0), generation = gen(system)*
Steptype = 8:
for t<0, for t>0, vg= , generation = 0 at t<0 (Force Steady state to be 0), generation =gen(system)*
For example:
$solvetimestep2D 2 2 2 1.0e-10 1.0e-6 3.00 0.1 1.0e6 0.0 2 4 1.0e-10 1.0e-6 3.00 0.1 1.0e6 0.0
The $Solvetimestep2D setting in GUI interface is here
1. Press Time Dependent module, check the box and press Add new sweep modes.
2. Fill in the fields as needed!
related:
$savetimestep2D