"$solvetimestep" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
行 8: 行 8:
   
 
Steptype = 1: <br>
 
Steptype = 1: <br>
<math>\delta t, t_{total}, vg_0 </math><br>
+
<math>\delta t,~~ t_{total},~~ vg_0 </math><br>
 
vg=vg_end for t<0, for t>0, vg=<math> vg_0 </math><br>
 
vg=vg_end for t<0, for t>0, vg=<math> vg_0 </math><br>
   
 
Steptype = 2: <br>
 
Steptype = 2: <br>
<math>\delta t, t_{total}, vg_0 , A_{0} , \omega , c_{0} </math><br>
+
<math>\delta t,~~ t_{total},~~ vg_0 ,~~ A_{0} ,~~ \omega,~~ c_{0} </math><br>
 
<math> vg=vg_0 + A_{0} \times sin\left( 2\pi \omega t + c_0 \right) </math><br>
 
<math> vg=vg_0 + A_{0} \times sin\left( 2\pi \omega t + c_0 \right) </math><br>
   
 
Steptype = 3: <br>
 
Steptype = 3: <br>
<math>\delta t, t_{total}, vg_0 , A_{0} , \omega , c_{0} </math><br>
+
<math>\delta t, ~~t_{total},~~ vg_0 ,~~ A_{0} ,~~ \omega ,~~ c_{0} </math><br>
 
<math> vg=vg_0 + int(A_{0} \times sin\left( 2\pi \omega t + c_0 \right)) </math><br>
 
<math> vg=vg_0 + int(A_{0} \times sin\left( 2\pi \omega t + c_0 \right)) </math><br>
  +
  +
For example: <br>
  +
  +
$solvetimestep
  +
2
  +
1.0e-10 1.0e-6 3.00 0.1 1.0e6 0.0
  +
  +
<math> vg=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t \right) </math><br>

於 2017年8月29日 (二) 11:10 的修訂

$solvetimestep is a command for solving the transient behavior of the device. The format is

$solvetimestep
steptype
parameters(1) parameters(2) ....    

The number of parameters depeding on step type. Now we have 3 step types

Steptype  = 1:  
\delta t,~~ t_{total},~~ vg_0
vg=vg_end for t<0, for t>0, vg= vg_0
Steptype  = 2:  
\delta t,~~ t_{total},~~ vg_0 ,~~ A_{0} ,~~ \omega,~~ c_{0}
 vg=vg_0 +  A_{0} \times sin\left( 2\pi \omega t + c_0 \right)
Steptype  = 3:  
\delta t, ~~t_{total},~~ vg_0 ,~~  A_{0} ,~~ \omega ,~~ c_{0}
 vg=vg_0 +  int(A_{0} \times sin\left( 2\pi \omega t + c_0 \right))

For example:

$solvetimestep 
2
1.0e-10 1.0e-6 3.00 0.1 1.0e6 0.0 
  vg=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t  \right)