「$solvetimestep」:修訂間差異

出自DDCC TCAD TOOL Manual
跳至導覽 跳至搜尋
Yrwu留言 | 貢獻
無編輯摘要
Yrwu留言 | 貢獻
無編輯摘要
第1行: 第1行:
$solvetimestep is a command for solving the transient behavior of the device. The format is  
$solvetimestep is a command for solving the transient behavior of the device. The format is  


  $solvetimestep2D
  $solvetimestep
  number_of_different_steps(Nt)
  number_of_different_steps(Nt)
  steptype contact_type <math>\delta t ~~  t_{total}</math> par1 par2 par3 par4 ....     
  steptype <math>\delta t ~~  t_{total}</math> par1 par2 par3 par4 ....     
  steptype contact_type <math>\delta t ~~  t_{total}</math> par1 par2 par3 par4 ....     
  steptype <math>\delta t ~~  t_{total}</math> par1 par2 par3 par4 ....     
  ...
  ...
  steptype contact_type <math>\delta t ~~  t_{total}</math> par1 par2 par3 par4 ....    repeat Nt times
  steptype <math>\delta t ~~  t_{total}</math> par1 par2 par3 par4 ....    repeat Nt times




第23行: 第23行:
  <math> vg=vg_0 +  int(A_{0} \times sin\left( 2\pi \omega t + c_0 \right)) </math><br>
  <math> vg=vg_0 +  int(A_{0} \times sin\left( 2\pi \omega t + c_0 \right)) </math><br>


contact_type
 
2: gate
3: source
4: drain


For example: <br>  
For example: <br>  
第35行: 第32行:
  2 4 1.0e-10 1.0e-6 3.00 0.1 1.0e6 0.0  
  2 4 1.0e-10 1.0e-6 3.00 0.1 1.0e6 0.0  
   <math> vg=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t  \right) </math><br>
   <math> vg=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t  \right) </math><br>
  <math> vd=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t  \right) </math><br>

於 2018年2月23日 (五) 08:51 的修訂

$solvetimestep is a command for solving the transient behavior of the device. The format is

$solvetimestep
number_of_different_steps(Nt)
steptype δtttotal par1 par2 par3 par4 ....    
steptype δtttotal par1 par2 par3 par4 ....    
...
steptype δtttotal par1 par2 par3 par4 ....    repeat Nt times


The number of parameters depeding on step type. Now we have 3 step types

Steptype  = 1:  
δt,ttotal,vg0
vg=vg_end for t<0, for t>0, vg=vg0
Steptype  = 2:  
δt,ttotal,vg0,A0,ω,c0
vg=vg0+A0×sin(2πωt+c0)
Steptype  = 3:  
δt,ttotal,vg0,A0,ω,c0
vg=vg0+int(A0×sin(2πωt+c0))


For example:

$solvetimestep2D
2
2 2 1.0e-10 1.0e-6 3.00 0.1 1.0e6 0.0 
2 4 1.0e-10 1.0e-6 3.00 0.1 1.0e6 0.0 
 vg=3.0+0.1×sin(2π×106t)