"$usemubydopeT" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
(已建立頁面,內容為 "$usetaunrbyfunc is to enable the temperature and carrier density dependent nonradiative lifetime module with the predefined function. The function is designed for ea...")
 
行 1: 行 1:
$usetaunrbyfunc is to enable the temperature and carrier density dependent nonradiative lifetime module with the predefined function. The function is designed for each region.
+
$usemubydopeT is to enable the temperature and carrier density dependent mobility module with the predefined function. The function is designed for each region.
 
So if total n regions is used, then you will need to setup n regions. The format is
 
So if total n regions is used, then you will need to setup n regions. The format is
   
$usetaunrbyfunc
 
  +
$usemubydopeT
 
Type_R1 p1 p2 p3 p4 p5.....p12
 
Type_R1 p1 p2 p3 p4 p5.....p12
 
Type_R2 p1 p2 p3 p4 p5.....p12
 
Type_R2 p1 p2 p3 p4 p5.....p12
行 14: 行 14:
 
Type
 
Type
 
0: Use the original nonradiative lifetime defined in parameter setions
 
0: Use the original nonradiative lifetime defined in parameter setions
1: <math> \tau_{n} = p1 \times (\frac{T}{p3}) ^{p2} </math> , and <math> \tau_{p} = \tau_{n} </math>
+
1: <math> \mu_{n} = p1 \times (\frac{T}{p3}) ^{p2} </math> , and <math> \mu_{p} = \m_{n} </math>
2: <math> \tau_{n} = p1 \times (\frac{T}{p5}) ^{p3} </math> , and <math> \tau_{n} = p2 \times (\frac{T}{p5}) ^{p4} </math>
+
2: <math> \m_{n} = p1 \times (\frac{T}{p5}) ^{p3} </math> , and <math> \mu_{n} = p2 \times (\frac{T}{p5}) ^{p4} </math>
3: <math> \tau_{n} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math> , and <math> \tau_{p} = \tau_{n} </math>
+
3: <math> \m_{n} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math> , and <math> \mu_{p} = \tau_{n} </math>
4: <math> \tau_{n} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math> , and <math> \tau_{p} = p5 + \left(\frac{P6-P5}{1+(\frac{N_{a}}{p7}) ^{p8}} \right) </math>
+
4: <math> \m_{n} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math> , and <math> \mu_{p} = p5 + \left(\frac{P6-P5}{1+(\frac{N_{a}}{p7}) ^{p8}} \right) </math>
13: <math> \tau_{n,0} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math>, <math>\tau_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and <math> \tau_{p} = \tau_{n} </math>
+
13: <math> \m_{n,0} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math>, <math>\mu_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and <math> \tau_{p} = \tau_{n} </math>
24: <math> \tau_{n,0} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math>, <math>\tau_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and
+
24: <math> \m_{n,0} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math>, <math>\mu_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and
<math> \tau_{p,0} = p7 + \left(\frac{P8-P7}{1+(\frac{N_{d}}{p9}) ^{p10}} \right) </math>, <math>\tau_{p} = \tau_{p,0} \times (\frac{T}{p11}) ^{p12} </math>.
+
<math> \m_{p,0} = p7 + \left(\frac{P8-P7}{1+(\frac{N_{d}}{p9}) ^{p10}} \right) </math>, <math>\mu_{p} = \tau_{p,0} \times (\frac{T}{p11}) ^{p12} </math>.
   
If the lifetime is for activated dopant then
+
If the mobility is for activated dopant density then
   
31: <math> \tau_{n} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math> , and <math> \tau_{p} = \tau_{n} </math>
+
31: <math> \mu_{n} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math> , and <math> \mu_{p} = \mu_{n} </math>
41: <math> \tau_{n} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math> , and <math> \tau_{p} = p5 + \left(\frac{P6-P5}{1+(\frac{N_{a}^{-1}}{p7}) ^{p8}} \right) </math>
+
41: <math> \mu_{n} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math> , and <math> \mu_{p} = p5 + \left(\frac{P6-P5}{1+(\frac{N_{a}^{-1}}{p7}) ^{p8}} \right) </math>
131: <math> \tau_{n,0} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math>, <math>\tau_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and <math> \tau_{p} = \tau_{n} </math>
+
131: <math> \mu_{n,0} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math>, <math>\mu_{n} = \mu{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and <math> \tau_{p} = \tau_{n} </math>
241: <math> \tau_{n,0} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math>, <math>\tau_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and
+
241: <math> \mu_{n,0} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math>, <math>\mu_{n} = \mu_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and
<math> \tau_{p,0} = p7 + \left(\frac{P8-P7}{1+(\frac{N_{a}^{-}}{p9}) ^{p10}} \right) </math>, <math>\tau_{p} = \tau_{p,0} \times (\frac{T}{p11}) ^{p12} </math>.
+
<math> \mu_{p,0} = p7 + \left(\frac{P8-P7}{1+(\frac{N_{a}^{-}}{p9}) ^{p10}} \right) </math>, <math>\mu_{p} = \mu_{p,0} \times (\frac{T}{p11}) ^{p12} </math>.

於 2018年5月23日 (三) 10:20 的修訂

$usemubydopeT is to enable the temperature and carrier density dependent mobility module with the predefined function. The function is designed for each region. So if total n regions is used, then you will need to setup n regions. The format is

$usemubydopeT
Type_R1  p1 p2 p3 p4 p5.....p12
Type_R2  p1 p2 p3 p4 p5.....p12
Type_R3  p1 p2 p3 p4 p5.....p12
...
...
... 
Type_RN  p1 p2 p3 p4 .....p12


Type

0: Use the original nonradiative lifetime defined in parameter setions
1:  \mu_{n} = p1 \times (\frac{T}{p3}) ^{p2}  , and 解析失敗 (不明函數 "\m"):  \mu_{p} = \m_{n} 

2: 解析失敗 (不明函數 "\m"):  \m_{n} = p1 \times (\frac{T}{p5}) ^{p3} 
 , and  \mu_{n} = p2 \times (\frac{T}{p5}) ^{p4} 
3: 解析失敗 (不明函數 "\m"):  \m_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) 
 , and  \mu_{p} = \tau_{n} 
4: 解析失敗 (不明函數 "\m"):  \m_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) 
 , and  \mu_{p} = p5 +  \left(\frac{P6-P5}{1+(\frac{N_{a}}{p7}) ^{p8}} \right) 
13: 解析失敗 (不明函數 "\m"):  \m_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) 
,  \mu_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6}  , and  \tau_{p} = \tau_{n} 
24: 解析失敗 (不明函數 "\m"):  \m_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) 
,  \mu_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6}  , and 
    解析失敗 (不明函數 "\m"):  \m_{p,0} = p7 +  \left(\frac{P8-P7}{1+(\frac{N_{d}}{p9}) ^{p10}} \right) 
,  \mu_{p} = \tau_{p,0} \times (\frac{T}{p11}) ^{p12} .

If the mobility is for activated dopant density then

31:  \mu_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right)  , and  \mu_{p} = \mu_{n} 
41:  \mu_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right)  , and  \mu_{p} = p5 +  \left(\frac{P6-P5}{1+(\frac{N_{a}^{-1}}{p7}) ^{p8}} \right) 
131:  \mu_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) ,  \mu_{n} = \mu{n,0} \times (\frac{T}{p5}) ^{p6}  , and  \tau_{p} = \tau_{n} 
241:  \mu_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) ,  \mu_{n} = \mu_{n,0} \times (\frac{T}{p5}) ^{p6}  , and 
     \mu_{p,0} = p7 +  \left(\frac{P8-P7}{1+(\frac{N_{a}^{-}}{p9}) ^{p10}} \right) ,  \mu_{p} = \mu_{p,0} \times (\frac{T}{p11}) ^{p12} .