"$usemubydopeT" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
行 16: 行 16:
 
1: <math> \mu_{n} = p1 \times (\frac{T}{p3}) ^{p2} </math> , and <math> \mu_{p} = p4 \times (\frac{T}{p6}) ^{p5} </math>
 
1: <math> \mu_{n} = p1 \times (\frac{T}{p3}) ^{p2} </math> , and <math> \mu_{p} = p4 \times (\frac{T}{p6}) ^{p5} </math>
 
2: <math> \mu_{n} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math> , and <math> \mu_{p} = p5 + \left(\frac{P6-P5}{1+(\frac{N_{a}}{p7}) ^{p8}} \right) </math>
 
2: <math> \mu_{n} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math> , and <math> \mu_{p} = p5 + \left(\frac{P6-P5}{1+(\frac{N_{a}}{p7}) ^{p8}} \right) </math>
3: <math> \mu_{n,0} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math>, <math>\mu_{n} = \mu_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and
+
3: <math> \mu_{n,0} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math>, <math>\mu_{n} = \mu_{n,0} \times \left(\frac{T}{p5}\right) ^{p6} </math> , and
<math> \mu_{p,0} = p7 + \left(\frac{P8-P7}{1+(\frac{N_{d}}{p9}) ^{p10}} \right) </math>, <math>\mu_{p} = \mu_{p,0} \times (\frac{T}{p11}) ^{p12} </math>.
+
<math> \mu_{p,0} = p7 + \left(\frac{P8-P7}{1+(\frac{N_{d}}{p9}) ^{p10}} \right) </math>, <math>\mu_{p} = \mu_{p,0} \times \left(\frac{T}{p11}\right) ^{p12} </math>.
   
 
If the mobility is for activated dopant density then
 
If the mobility is for activated dopant density then
   
 
21: <math> \mu_{n} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math> , and <math> \mu_{p} = p5 + \left(\frac{P6-P5}{1+(\frac{N_{a}^{-}}{p7}) ^{p8}} \right) </math>
 
21: <math> \mu_{n} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math> , and <math> \mu_{p} = p5 + \left(\frac{P6-P5}{1+(\frac{N_{a}^{-}}{p7}) ^{p8}} \right) </math>
31: <math> \mu_{n,0} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math>, <math>\mu_{n} = \mu_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and
+
31: <math> \mu_{n,0} = p1 + \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math>, <math>\mu_{n} = \mu_{n,0} \times \left(\frac{T}{p5}\right) ^{p6} </math> , and
<math> \mu_{p,0} = p7 + \left(\frac{P8-P7}{1+(\frac{N_{a}^{-}}{p9}) ^{p10}} \right) </math>, <math>\mu_{p} = \mu_{p,0} \times (\frac{T}{p11}) ^{p12} </math>.
+
<math> \mu_{p,0} = p7 + \left(\frac{P8-P7}{1+(\frac{N_{a}^{-}}{p9}) ^{p10}} \right) </math>, <math>\mu_{p} = \mu_{p,0} \times \left(\frac{T}{p11}\right) ^{p12} </math>.

於 2018年5月23日 (三) 10:38 的修訂

$usemubydopeT is to enable the temperature and carrier density dependent mobility module with the predefined function. The function is designed for each region. So if total n regions is used, then you will need to setup n regions. The format is

$usemubydopeT
Type_R1  p1 p2 p3 p4 p5.....p12
Type_R2  p1 p2 p3 p4 p5.....p12
Type_R3  p1 p2 p3 p4 p5.....p12
...
...
... 
Type_RN  p1 p2 p3 p4 .....p12


Type

0: Use the original mobility defined in parameter setions
1:  \mu_{n} = p1 \times (\frac{T}{p3}) ^{p2}  , and  \mu_{p} = p4 \times (\frac{T}{p6}) ^{p5} 
2:  \mu_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right)  , and  \mu_{p} = p5 +  \left(\frac{P6-P5}{1+(\frac{N_{a}}{p7}) ^{p8}} \right) 
3:  \mu_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) ,  \mu_{n} = \mu_{n,0} \times \left(\frac{T}{p5}\right) ^{p6}  , and 
    \mu_{p,0} = p7 +  \left(\frac{P8-P7}{1+(\frac{N_{d}}{p9}) ^{p10}} \right) ,  \mu_{p} = \mu_{p,0} \times \left(\frac{T}{p11}\right) ^{p12} .

If the mobility is for activated dopant density then

21:  \mu_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right)  , and  \mu_{p} = p5 +  \left(\frac{P6-P5}{1+(\frac{N_{a}^{-}}{p7}) ^{p8}} \right) 
31:  \mu_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) ,  \mu_{n} = \mu_{n,0} \times \left(\frac{T}{p5}\right) ^{p6}  , and 
     \mu_{p,0} = p7 +  \left(\frac{P8-P7}{1+(\frac{N_{a}^{-}}{p9}) ^{p10}} \right) ,  \mu_{p} = \mu_{p,0} \times \left(\frac{T}{p11}\right) ^{p12} .