"Solvetimestep2D" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
行 34: 行 34:
 
Steptype = 5: <br>
 
Steptype = 5: <br>
 
<math>\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}</math><br>
 
<math>\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}</math><br>
<math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = gen(system)*<math> (0.5+0.5*cos (\omega * t + c_{0})) </math> <br>
+
<math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = gen(system)*<math> (0.5+0.5*cos (2\pi \omega t + c_{0})) </math> <br>
   
 
Steptype = 6: <br>
 
Steptype = 6: <br>
 
<math>\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}</math><br>
 
<math>\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}</math><br>
<math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = gen(system)*<math> Int(0.5+0.5*cos (\omega * t + c_{0})) </math> <br>
+
<math>vg=vg_{end}</math> for t<0, for t>0, vg=<math> vg_0 </math> , generation = gen(system)*<math> Int(0.5+0.5*cos (2\pi \omega t + c_{0})) </math> <br>
   
   

於 2018年7月10日 (二) 13:20 的修訂

$solvetimestep2D is a command for solving the transient behavior of the device. The format is

$solvetimestep2D
number_of_different_steps(Nt)
steptype contact_type \delta t ~~   t_{total} par1 par2 par3 par4 ....    
steptype contact_type \delta t ~~   t_{total} par1 par2 par3 par4 ....    
...
steptype contact_type \delta t ~~   t_{total} par1 par2 par3 par4 ....    repeat Nt times


The number of parameters depeding on step type. Now we have 3 step types

Steptype  = 1:  
\delta t,~~ t_{total},~~ vg_0
vg=vg_{end} for t<0, for t>0, vg= vg_0
Steptype  = 2:  
\delta t,~~ t_{total},~~ vg_0 ,~~ A_{0} ,~~ \omega,~~ c_{0}
 vg=vg_{0} +  A_{0} \times sin\left( 2\pi \omega t + c_0 \right)
Steptype  = 3:  
\delta t, ~~t_{total},~~ vg_0 ,~~  A_{0} ,~~ \omega ,~~ c_{0}
 vg=vg_{0} +  int(A_{0} \times sin\left( 2\pi \omega t + c_0 \right))

contact_type

2: gate
3: source
4: drain
Steptype  = 4:  
\delta t,~~ t_{total},~~ vg_0
vg=vg_{end} for t<0, for t>0, vg= vg_0  , generation = system generation at t<0 and generation =0 for t> 0
Steptype  = 5:  
\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}
vg=vg_{end} for t<0, for t>0, vg= vg_0  , generation = gen(system)* (0.5+0.5*cos (2\pi \omega t + c_{0}))
Steptype  = 6:  
\delta t,~~ t_{total},~~ vg_0 ,~~ \omega ,~~ c_{0}
vg=vg_{end} for t<0, for t>0, vg= vg_0  , generation = gen(system)* Int(0.5+0.5*cos (2\pi \omega t + c_{0}))


For example:

$solvetimestep2D
2
2 2 1.0e-10 1.0e-6 3.00 0.1 1.0e6 0.0 
2 4 1.0e-10 1.0e-6 3.00 0.1 1.0e6 0.0 
  vg=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t  \right) 
 vd=3.0 + 0.1 \times sin\left( 2\pi \times 10^{6} t  \right)


related:
$savetimestep2D