"$MaterialParameter" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
(Format)
(Format)
 
(未顯示同一使用者於中間所作的 6 次修訂)
行 2: 行 2:
 
$MaterialParameter
 
$MaterialParameter
 
''type<sub>dis</sub> N ε<sub>r,∞</sub> μ<sub>r</sub> σ<sub>E</sub> σ<sub>H</sub>''
 
''type<sub>dis</sub> N ε<sub>r,∞</sub> μ<sub>r</sub> σ<sub>E</sub> σ<sub>H</sub>''
''par<sub>1</sub>(1) par<sub>1</sub>(2) par<sub>1</sub>(3) par<sub>1</sub>(4)''
+
''par<sub>1</sub>(1) par<sub>1</sub>(2) par<sub>1</sub>(3)''
''par<sub>2</sub>(1) par<sub>2</sub>(2) par<sub>2</sub>(3) par<sub>2</sub>(4)''
+
''par<sub>2</sub>(1) par<sub>2</sub>(2) par<sub>2</sub>(3)''
. . . .
+
. . .
. . . .
+
. . .
. . . .
+
. . .
''par<sub>p</sub>(1) par<sub>p</sub>(2) par<sub>p</sub>(3) par<sub>p</sub>(4)''
+
''par<sub>p</sub>(1) par<sub>p</sub>(2) par<sub>p</sub>(3)''
. . . .
+
. . .
. . . .
+
. . .
. . . .
+
. . .
''par<sub>N</sub>(1) par<sub>N</sub>(2) par<sub>N</sub>(3) par<sub>N</sub>(4)'' <font color=green>// where ''type<sub>dis</sub>'' and ''N'' are integers, but the others are floating points.</font>
+
''par<sub>N</sub>(1) par<sub>N</sub>(2) par<sub>N</sub>(3)'' <font color=green>// where ''type<sub>dis</sub>'' and ''N'' are integers, but the others are floating points.</font>
   
 
<font size=3>
 
<font size=3>
Refer to Chap. 9 at p.353 - p.368.<br>
+
Refer to Chap. 9 in p.353 - p.368.<br>
''type<sub>dis</sub>'' means the type of dispersive model. ''N'' means the number of poles in this material. ''ε<sub>r,∞</sub>'' is the relative permittivity at infinite frequency, ''μ<sub>r</sub>'' is relative permeability, ''σ<sub>E</sub>'' is electric conductivity, and ''σ<sub>H</sub>'' is equivalent magnetic loss, respectively.
+
''type<sub>dis</sub>'' means the type of dispersive model. <br>
  +
''N'' means the number of poles in this material. <br>
  +
''ε<sub>r,∞</sub>'' is the relative permittivity at infinite frequency, <br>
  +
''μ<sub>r</sub>'' is relative permeability, <br>
  +
''σ<sub>E</sub>'' is electric conductivity, <br>
  +
and ''σ<sub>H</sub>'' is equivalent magnetic loss, respectively.
 
</font>
 
</font>
   
行 21: 行 21:
 
|+
 
|+
 
|-
 
|-
|| Models || ''type<sub>dis</sub>'' || par<sub>p</sub>(1) || par<sub>p</sub>(2) || par<sub>p</sub>(3) || par<sub>p</sub>(4)
+
|| Models || ''type<sub>dis</sub>'' || par<sub>p</sub>(1) || par<sub>p</sub>(2) || par<sub>p</sub>(3)
 
|-
 
|-
|| non-dispersive || 0 || 0 || 0 || 0 || 0
+
|| non-dispersive || 0 || 0 || 0 || 0
 
|-
 
|-
|| Debye || 1 || ε<sub>s,p</sub> || ε<sub>∞,p</sub> || τ<sub>p</sub> || 0
+
|| Debye || 1 || Δε<sub>p</sub> || τ<sub>p</sub> || 0
 
|-
 
|-
|| Lorentz || 2 || ε<sub>s,p</sub> || ε<sub>∞,p</sub> || ω<sub>p</sub> || δ<sub>p</sub>
+
|| Lorentz || 2 || Δε<sub>p</sub> || ω<sub>p</sub> || δ<sub>p</sub>
 
|-
 
|-
|| Drude || 3 || ω<sub>i</sub> || γ<sub>p</sub> || 0 || 0
+
|| Drude || 3 || ω<sub>i</sub> || γ<sub>p</sub> || 0
 
|}
 
|}
   
 
<math>\varepsilon(\omega) = \varepsilon_\infty + \sum_{p=1}^P \chi_p(\omega)</math><br>
 
<math>\varepsilon(\omega) = \varepsilon_\infty + \sum_{p=1}^P \chi_p(\omega)</math><br>
   
<font size=4>Debye model: </font><math>\chi_p(\omega) = \frac{(\varepsilon_{s,p}-\varepsilon_{\infty,p})}{1+j\omega\tau_p}</math><br><br>
+
<font size=4>Debye model: </font><math>\chi_p(\omega) = \frac{\Delta\varepsilon_{p}}{1+j\omega\tau_p}</math><br><br>
<font size=4>Lorentz model: </font><math>\chi_p(\omega) = \frac{(\varepsilon_{s,p}-\varepsilon_{\infty,p})\omega_p^2}{\omega_p^2+2j\omega\delta_p-\omega^2}</math><br><br>
+
<font size=4>Lorentz model: </font><math>\chi_p(\omega) = \frac{\Delta\varepsilon_{p} \omega_p^2}{\omega_p^2+2j\omega\delta_p-\omega^2}</math><br><br>
 
<font size=4>Drude model: </font><math>\chi_p(\omega) = -\frac{\omega_p^2}{\omega^2-j\omega\gamma_p}</math><br><br>
 
<font size=4>Drude model: </font><math>\chi_p(\omega) = -\frac{\omega_p^2}{\omega^2-j\omega\gamma_p}</math><br><br>
   
 
=='''Example'''==
 
=='''Example'''==
 
$NumberofObject
 
$NumberofObject
1
+
2
 
$MaterialParameter
 
$MaterialParameter
 
2 3 10 1 0 0
 
2 3 10 1 0 0
10 7 1.2566e15 1e14
+
3 1.2566e15 1e14
10 7 2.5133e15 2e14
+
3 2.5133e15 2e14
10 7 3.7699e15 3e14
+
3 3.7699e15 3e14
+
2 2 10 1 0 0
  +
3 1.2566e15 1e14
  +
3 2.5133e15 2e14
   
 
== '''Related commands''' ==
 
== '''Related commands''' ==

於 2020年3月25日 (三) 15:16 的最新修訂

Format

$MaterialParameter
 typedis       N         εr,∞        μr          σE          σH
 par1(1)    par1(2)    par1(3)
 par2(1)    par2(2)    par2(3)
   .          .          .          
   .          .          .          
   .          .          .         
 parp(1)    parp(2)    parp(3)
   .          .          .          
   .          .          .          
   .          .          .          
 parN(1)    parN(2)    parN(3)                // where typedis and N are integers, but the others are floating points.

Refer to Chap. 9 in p.353 - p.368.
typedis means the type of dispersive model.
N means the number of poles in this material.
εr,∞ is the relative permittivity at infinite frequency,
μr is relative permeability,
σE is electric conductivity,
and σH is equivalent magnetic loss, respectively.

Models typedis parp(1) parp(2) parp(3)
non-dispersive 0 0 0 0
Debye 1 Δεp τp 0
Lorentz 2 Δεp ωp δp
Drude 3 ωi γp 0

\varepsilon(\omega) = \varepsilon_\infty + \sum_{p=1}^P \chi_p(\omega)

Debye model: \chi_p(\omega) = \frac{\Delta\varepsilon_{p}}{1+j\omega\tau_p}

Lorentz model: \chi_p(\omega) = \frac{\Delta\varepsilon_{p} \omega_p^2}{\omega_p^2+2j\omega\delta_p-\omega^2}

Drude model: \chi_p(\omega) = -\frac{\omega_p^2}{\omega^2-j\omega\gamma_p}

Example

$NumberofObject
 2
$MaterialParameter
 2 3 10 1 0 0
 3 1.2566e15 1e14
 3 2.5133e15 2e14
 3 3.7699e15 3e14
 2 2 10 1 0 0
 3 1.2566e15 1e14
 3 2.5133e15 2e14

Related commands

Input file 1: $NumberofObject, $MaterialStructure
Input file 2: $Backgroundparameter