「GaussXX」:修訂間差異

出自DDCC TCAD TOOL Manual
跳至導覽 跳至搜尋
CJchen留言 | 貢獻
已建立頁面,內容為 "=='''Format'''== GaussNR, sigma, GaussNT, sigma, GaussSR, sigma, GaussST, sigma // float, float <font size=3> The probability of a light ray being reflecte..."
 
CJchen留言 | 貢獻
無編輯摘要
 
(未顯示同一使用者於中間所作的 5 次修訂)
第1行: 第1行:
=='''Format'''==
=='''Format'''==
  GaussNR,  sigma, GaussNT,  sigma, GaussSR,  sigma, GaussST,  sigma // float, float
  GaussNR,  sigma, GaussNT,  sigma, GaussSR,  sigma, GaussST,  sigma // all float


<font size=3>
<font size=3>
The probability of a light ray being reflected by or transmitted through the surface according to Gaussian distribution. The central direction of Gaussian distribution can be given by either normal vector or specular vector. "R" stands for reflection and "T" stands for Transmission. "N" stands for normal and "S" stands for specular. The "sigma" values are the standard deviations for corresponding Gaussian distributions.
The probability of a light ray being reflected by or transmitted through the surface according to Gaussian distribution, and the corresponding standard deviation. The central direction of Gaussian distribution can be given by either normal vector or specular vector. "R" stands for reflection and "T" stands for Transmission. "N" stands for normal and "S" stands for specular. The "sigma" values are the standard deviations for corresponding Gaussian distributions.
</font>
</font>
=='''Math'''==
{| class="wikitable"
|-
! BSDF
! PDF
|-
| <math>Ae^{-(\frac{\sin \theta}{\sigma})^2}</math>
| <math>Ae^{-(\frac{\sin \theta}{\sigma})^2}\cos \theta </math>
|}

於 2019年9月24日 (二) 01:39 的最新修訂

Format

GaussNR,   sigma, GaussNT,   sigma, GaussSR,   sigma, GaussST,   sigma // all float

The probability of a light ray being reflected by or transmitted through the surface according to Gaussian distribution, and the corresponding standard deviation. The central direction of Gaussian distribution can be given by either normal vector or specular vector. "R" stands for reflection and "T" stands for Transmission. "N" stands for normal and "S" stands for specular. The "sigma" values are the standard deviations for corresponding Gaussian distributions.

Math

BSDF PDF
Ae(sinθσ)2 Ae(sinθσ)2cosθ