"$callexciton" 修訂間的差異
出自 DDCC TCAD TOOL Manual
Jameshuang (對話 | 貢獻) |
Jameshuang (對話 | 貢獻) |
||
行 19: | 行 19: | ||
* n : the number of tables we usually set n as 5. |
* n : the number of tables we usually set n as 5. |
||
− | * d : diffusion coefficient. <math>(cm^{2} |
+ | * d : diffusion coefficient. <math>(cm^{2}s^{-1})</math> |
* kr : radiatvie rate constant <math>(s^{-1})</math> |
* kr : radiatvie rate constant <math>(s^{-1})</math> |
||
* knr :non-radiative rate constant <math>(s^{-1})</math> |
* knr :non-radiative rate constant <math>(s^{-1})</math> |
||
− | * gamma : quenching coefficient. <math>(cm^{2} |
+ | * gamma : quenching coefficient. <math>(cm^{2}s^{-1})</math> |
* g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1. |
* g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1. |
||
於 2017年8月23日 (三) 09:42 的修訂
Function for calculate the exciton distribution. We usually use this equation for organic material. Behavior of exciton will follow this equation. You can see the detail in Subroutine_exciton1D.
Where
- is diffusion coefficient.
- is relaxation time of exciton.
- is annihilation rate constant.
- is exciton generation rate.
Format
$callexciton n d kr knr gamma g
Parameter Explanation
- n : the number of tables we usually set n as 5.
- d : diffusion coefficient.
- kr : radiatvie rate constant
- knr :non-radiative rate constant
- gamma : quenching coefficient.
- g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1.
Example
$callexciton 5 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1