「$usemubydopeT」:修訂間差異

出自DDCC TCAD TOOL Manual
跳至導覽 跳至搜尋
Yrwu留言 | 貢獻
已建立頁面,內容為 "$usetaunrbyfunc is to enable the temperature and carrier density dependent nonradiative lifetime module with the predefined function. The function is designed for ea..."
 
Yrwu留言 | 貢獻
無編輯摘要
第1行: 第1行:
$usetaunrbyfunc is to enable the temperature and carrier density dependent nonradiative lifetime module with the predefined function. The function is designed for each region.  
$usemubydopeT  is to enable the temperature and carrier density dependent mobility module with the predefined function. The function is designed for each region.  
So if total n regions is used, then you will need to setup n regions. The format is  
So if total n regions is used, then you will need to setup n regions. The format is  


  $usetaunrbyfunc
  $usemubydopeT
  Type_R1  p1 p2 p3 p4 p5.....p12
  Type_R1  p1 p2 p3 p4 p5.....p12
  Type_R2  p1 p2 p3 p4 p5.....p12
  Type_R2  p1 p2 p3 p4 p5.....p12
第14行: 第14行:
Type  
Type  
  0: Use the original nonradiative lifetime defined in parameter setions
  0: Use the original nonradiative lifetime defined in parameter setions
  1: <math> \tau_{n} = p1 \times (\frac{T}{p3}) ^{p2} </math> , and <math> \tau_{p} = \tau_{n} </math>
  1: <math> \mu_{n} = p1 \times (\frac{T}{p3}) ^{p2} </math> , and <math> \mu_{p} = \m_{n} </math>
  2: <math> \tau_{n} = p1 \times (\frac{T}{p5}) ^{p3} </math> , and <math> \tau_{n} = p2 \times (\frac{T}{p5}) ^{p4} </math>
  2: <math> \m_{n} = p1 \times (\frac{T}{p5}) ^{p3} </math> , and <math> \mu_{n} = p2 \times (\frac{T}{p5}) ^{p4} </math>
  3: <math> \tau_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math> , and <math> \tau_{p} = \tau_{n} </math>
  3: <math> \m_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math> , and <math> \mu_{p} = \tau_{n} </math>
  4: <math> \tau_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math> , and <math> \tau_{p} = p5 +  \left(\frac{P6-P5}{1+(\frac{N_{a}}{p7}) ^{p8}} \right) </math>
  4: <math> \m_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math> , and <math> \mu_{p} = p5 +  \left(\frac{P6-P5}{1+(\frac{N_{a}}{p7}) ^{p8}} \right) </math>
  13: <math> \tau_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math>,  <math>\tau_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and <math> \tau_{p} = \tau_{n} </math>
  13: <math> \m_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math>,  <math>\mu_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and <math> \tau_{p} = \tau_{n} </math>
  24: <math> \tau_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math>,  <math>\tau_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and  
  24: <math> \m_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) </math>,  <math>\mu_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and  
     <math> \tau_{p,0} = p7 +  \left(\frac{P8-P7}{1+(\frac{N_{d}}{p9}) ^{p10}} \right) </math>,  <math>\tau_{p} = \tau_{p,0} \times (\frac{T}{p11}) ^{p12} </math>.
     <math> \m_{p,0} = p7 +  \left(\frac{P8-P7}{1+(\frac{N_{d}}{p9}) ^{p10}} \right) </math>,  <math>\mu_{p} = \tau_{p,0} \times (\frac{T}{p11}) ^{p12} </math>.


If the lifetime is for activated dopant then
If the mobility is for activated dopant density then


  31: <math> \tau_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math> , and <math> \tau_{p} = \tau_{n} </math>
  31: <math> \mu_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math> , and <math> \mu_{p} = \mu_{n} </math>
  41: <math> \tau_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math> , and <math> \tau_{p} = p5 +  \left(\frac{P6-P5}{1+(\frac{N_{a}^{-1}}{p7}) ^{p8}} \right) </math>
  41: <math> \mu_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math> , and <math> \mu_{p} = p5 +  \left(\frac{P6-P5}{1+(\frac{N_{a}^{-1}}{p7}) ^{p8}} \right) </math>
  131: <math> \tau_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math>,  <math>\tau_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and <math> \tau_{p} = \tau_{n} </math>
  131: <math> \mu_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math>,  <math>\mu_{n} = \mu{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and <math> \tau_{p} = \tau_{n} </math>
  241: <math> \tau_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math>,  <math>\tau_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and  
  241: <math> \mu_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) </math>,  <math>\mu_{n} = \mu_{n,0} \times (\frac{T}{p5}) ^{p6} </math> , and  
     <math> \tau_{p,0} = p7 +  \left(\frac{P8-P7}{1+(\frac{N_{a}^{-}}{p9}) ^{p10}} \right) </math>,  <math>\tau_{p} = \tau_{p,0} \times (\frac{T}{p11}) ^{p12} </math>.
     <math> \mu_{p,0} = p7 +  \left(\frac{P8-P7}{1+(\frac{N_{a}^{-}}{p9}) ^{p10}} \right) </math>,  <math>\mu_{p} = \mu_{p,0} \times (\frac{T}{p11}) ^{p12} </math>.

於 2018年5月23日 (三) 02:20 的修訂

$usemubydopeT is to enable the temperature and carrier density dependent mobility module with the predefined function. The function is designed for each region. So if total n regions is used, then you will need to setup n regions. The format is

$usemubydopeT
Type_R1  p1 p2 p3 p4 p5.....p12
Type_R2  p1 p2 p3 p4 p5.....p12
Type_R3  p1 p2 p3 p4 p5.....p12
...
...
... 
Type_RN  p1 p2 p3 p4 .....p12


Type

0: Use the original nonradiative lifetime defined in parameter setions
1: μn=p1×(Tp3)p2 , and 解析失敗 (不明函數 "\m"): {\displaystyle  \mu_{p} = \m_{n} }

2: 解析失敗 (不明函數 "\m"): {\displaystyle  \m_{n} = p1 \times (\frac{T}{p5}) ^{p3} }
 , and μn=p2×(Tp5)p4
3: 解析失敗 (不明函數 "\m"): {\displaystyle  \m_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) }
 , and μp=τn
4: 解析失敗 (不明函數 "\m"): {\displaystyle  \m_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) }
 , and μp=p5+(P6P51+(Nap7)p8)
13: 解析失敗 (不明函數 "\m"): {\displaystyle  \m_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) }
,  μn=τn,0×(Tp5)p6 , and τp=τn
24: 解析失敗 (不明函數 "\m"): {\displaystyle  \m_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) }
,  μn=τn,0×(Tp5)p6 , and 
    解析失敗 (不明函數 "\m"): {\displaystyle  \m_{p,0} = p7 +  \left(\frac{P8-P7}{1+(\frac{N_{d}}{p9}) ^{p10}} \right) }
,  μp=τp,0×(Tp11)p12.

If the mobility is for activated dopant density then

31: μn=p1+(P2P11+(Nd+p3)p4) , and μp=μn
41: μn=p1+(P2P11+(Nd+p3)p4) , and μp=p5+(P6P51+(Na1p7)p8)
131: μn,0=p1+(P2P11+(Nd+p3)p4),  μn=μn,0×(Tp5)p6 , and τp=τn
241: μn,0=p1+(P2P11+(Nd+p3)p4),  μn=μn,0×(Tp5)p6 , and 
    μp,0=p7+(P8P71+(Nap9)p10),  μp=μp,0×(Tp11)p12.