"$MaterialParameter" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
(Example)
行 46: 行 46:
 
3 2.5133e15 2e14
 
3 2.5133e15 2e14
 
3 3.7699e15 3e14
 
3 3.7699e15 3e14
 
   
 
== '''Related commands''' ==
 
== '''Related commands''' ==

於 2018年8月21日 (二) 10:47 的修訂

Format

$MaterialParameter
 typedis       N         εr,∞        μr          σE          σH
 par1(1)    par1(2)    par1(3)
 par2(1)    par2(2)    par2(3)
   .          .          .          
   .          .          .          
   .          .          .         
 parp(1)    parp(2)    parp(3)
   .          .          .          
   .          .          .          
   .          .          .          
 parN(1)    parN(2)    parN(3)                // where typedis and N are integers, but the others are floating points.

Refer to Chap. 9 in p.353 - p.368.
typedis means the type of dispersive model. N means the number of poles in this material. εr,∞ is the relative permittivity at infinite frequency, μr is relative permeability, σE is electric conductivity, and σH is equivalent magnetic loss, respectively.

Models typedis parp(1) parp(2) parp(3)
non-dispersive 0 0 0 0
Debye 1 Δεp τp 0
Lorentz 2 Δεp ωp δp
Drude 3 ωi γp 0

\varepsilon(\omega) = \varepsilon_\infty + \sum_{p=1}^P \chi_p(\omega)

Debye model: \chi_p(\omega) = \frac{\Delta\varepsilon_{p}}{1+j\omega\tau_p}

Lorentz model: \chi_p(\omega) = \frac{\Delta\varepsilon_{p} \omega_p^2}{\omega_p^2+2j\omega\delta_p-\omega^2}

Drude model: \chi_p(\omega) = -\frac{\omega_p^2}{\omega^2-j\omega\gamma_p}

Example

$NumberofObject
 2
$MaterialParameter
 2 3 10 1 0 0
 3 1.2566e15 1e14
 3 2.5133e15 2e14
 3 3.7699e15 3e14

Related commands

Input file 1: $NumberofObject, $MaterialStructure
Input file 2: $Backgroundparameter