"$MaterialParameter" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
(Example)
(Format)
 
行 15: 行 15:
 
<font size=3>
 
<font size=3>
 
Refer to Chap. 9 in p.353 - p.368.<br>
 
Refer to Chap. 9 in p.353 - p.368.<br>
''type<sub>dis</sub>'' means the type of dispersive model. ''N'' means the number of poles in this material. ''ε<sub>r,∞</sub>'' is the relative permittivity at infinite frequency, ''μ<sub>r</sub>'' is relative permeability, ''σ<sub>E</sub>'' is electric conductivity, and ''σ<sub>H</sub>'' is equivalent magnetic loss, respectively.
 
  +
''type<sub>dis</sub>'' means the type of dispersive model. <br>
  +
''N'' means the number of poles in this material. <br>
  +
''ε<sub>r,∞</sub>'' is the relative permittivity at infinite frequency, <br>
  +
''μ<sub>r</sub>'' is relative permeability, <br>
  +
''σ<sub>E</sub>'' is electric conductivity, <br>
  +
and ''σ<sub>H</sub>'' is equivalent magnetic loss, respectively.
 
</font>
 
</font>
   

於 2020年3月25日 (三) 15:16 的最新修訂

Format

$MaterialParameter
 typedis       N         εr,∞        μr          σE          σH
 par1(1)    par1(2)    par1(3)
 par2(1)    par2(2)    par2(3)
   .          .          .          
   .          .          .          
   .          .          .         
 parp(1)    parp(2)    parp(3)
   .          .          .          
   .          .          .          
   .          .          .          
 parN(1)    parN(2)    parN(3)                // where typedis and N are integers, but the others are floating points.

Refer to Chap. 9 in p.353 - p.368.
typedis means the type of dispersive model.
N means the number of poles in this material.
εr,∞ is the relative permittivity at infinite frequency,
μr is relative permeability,
σE is electric conductivity,
and σH is equivalent magnetic loss, respectively.

Models typedis parp(1) parp(2) parp(3)
non-dispersive 0 0 0 0
Debye 1 Δεp τp 0
Lorentz 2 Δεp ωp δp
Drude 3 ωi γp 0

\varepsilon(\omega) = \varepsilon_\infty + \sum_{p=1}^P \chi_p(\omega)

Debye model: \chi_p(\omega) = \frac{\Delta\varepsilon_{p}}{1+j\omega\tau_p}

Lorentz model: \chi_p(\omega) = \frac{\Delta\varepsilon_{p} \omega_p^2}{\omega_p^2+2j\omega\delta_p-\omega^2}

Drude model: \chi_p(\omega) = -\frac{\omega_p^2}{\omega^2-j\omega\gamma_p}

Example

$NumberofObject
 2
$MaterialParameter
 2 3 10 1 0 0
 3 1.2566e15 1e14
 3 2.5133e15 2e14
 3 3.7699e15 3e14
 2 2 10 1 0 0
 3 1.2566e15 1e14
 3 2.5133e15 2e14

Related commands

Input file 1: $NumberofObject, $MaterialStructure
Input file 2: $Backgroundparameter