"$callexciton" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
行 14: 行 14:
 
$callexciton
 
$callexciton
 
n
 
n
  +
a b c d f g
 
d kr knr gamma g<br />
 
d kr knr gamma g<br />
   
行 19: 行 20:
   
 
* n : the number of tables we usually set n as 5.
 
* n : the number of tables we usually set n as 5.
  +
* a : The type of exciton solver mode : 1: Time-dependent triplet solver 2:
  +
 
* d : diffusion coefficient. <math>(cm^{2}s^{-1})</math>
 
* d : diffusion coefficient. <math>(cm^{2}s^{-1})</math>
 
* kr : radiatvie rate constant <math>(s^{-1})</math>
 
* kr : radiatvie rate constant <math>(s^{-1})</math>

於 2020年5月13日 (三) 19:48 的修訂

Function for calculate the exciton distribution. We usually use this equation for organic material. Behavior of exciton will follow this equation. You can see the detail in Subroutine_exciton1D.


\frac{dn_{ex}}{dt}=D{\nabla}^2{n_{ex}(r)}-\frac{n_{ex}(r)}{\tau}-\gamma{n_{ex}(r)}^2+G


Where 

  • D is diffusion coefficient.
  • \tau is relaxation time of exciton.
  • \gamma is annihilation rate constant.
  • G is exciton generation rate.

Format

$callexciton
n
a b c d f g
d kr knr gamma g

Parameter Explanation

  • n : the number of tables we usually set n as 5.
  • a : The type of exciton solver mode : 1: Time-dependent triplet solver 2:
  • d : diffusion coefficient. (cm^{2}s^{-1})
  • kr : radiatvie rate constant (s^{-1})
  • knr :non-radiative rate constant (s^{-1})
  • gamma : quenching coefficient. (cm^{2}s^{-1})
  • g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1.

Example

$callexciton
5
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1
2e-14 20000 3000 1e-12 1

Subroutine_exciton1D,