"$callexciton" 修訂間的差異
出自 DDCC TCAD TOOL Manual
行 22: | 行 22: | ||
* a : The type of exciton solver mode |
* a : The type of exciton solver mode |
||
1: Time-dependent triplet solver |
1: Time-dependent triplet solver |
||
− | 2: |
||
+ | 123: Time-dependent triplet and singlet solver (For TADF OLEDs model) |
||
+ | 3: Triplet Exciton Solver (For PhOLEDs model) |
||
+ | 6: Singlet and Triplet Exciton Solver (For TADF OLEDs model) |
||
+ | 4: Triplet Exciton Solver with exciton blocking boundary |
||
* d : diffusion coefficient. <math>(cm^{2}s^{-1})</math> |
* d : diffusion coefficient. <math>(cm^{2}s^{-1})</math> |
於 2020年5月13日 (三) 19:51 的修訂
Function for calculate the exciton distribution. We usually use this equation for organic material. Behavior of exciton will follow this equation. You can see the detail in Subroutine_exciton1D.
Where
- is diffusion coefficient.
- is relaxation time of exciton.
- is annihilation rate constant.
- is exciton generation rate.
Format
$callexciton n a b c d f g d kr knr gamma g
Parameter Explanation
- n : the number of tables we usually set n as 5.
- a : The type of exciton solver mode
1: Time-dependent triplet solver 123: Time-dependent triplet and singlet solver (For TADF OLEDs model) 3: Triplet Exciton Solver (For PhOLEDs model) 6: Singlet and Triplet Exciton Solver (For TADF OLEDs model) 4: Triplet Exciton Solver with exciton blocking boundary
- d : diffusion coefficient.
- kr : radiatvie rate constant
- knr :non-radiative rate constant
- gamma : quenching coefficient.
- g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1.
Example
$callexciton 5 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1