「$callexciton」:修訂間差異
跳至導覽
跳至搜尋
無編輯摘要 |
無編輯摘要 |
||
| 第22行: | 第22行: | ||
* a : The type of exciton solver mode | * a : The type of exciton solver mode | ||
1: Time-dependent triplet solver | 1: Time-dependent triplet solver | ||
123: Time-dependent triplet and singlet solver (For TADF OLEDs model) | |||
3: Triplet Exciton Solver (For PhOLEDs model) | |||
6: Singlet and Triplet Exciton Solver (For TADF OLEDs model) | |||
4: Triplet Exciton Solver with exciton blocking boundary | |||
* d : diffusion coefficient. <math>(cm^{2}s^{-1})</math> | * d : diffusion coefficient. <math>(cm^{2}s^{-1})</math> | ||
於 2020年5月13日 (三) 11:51 的修訂
Function for calculate the exciton distribution. We usually use this equation for organic material. Behavior of exciton will follow this equation. You can see the detail in Subroutine_exciton1D.
Where
- is diffusion coefficient.
- is relaxation time of exciton.
- is annihilation rate constant.
- is exciton generation rate.
Format
$callexciton n a b c d f g d kr knr gamma g
Parameter Explanation
- n : the number of tables we usually set n as 5.
- a : The type of exciton solver mode
1: Time-dependent triplet solver 123: Time-dependent triplet and singlet solver (For TADF OLEDs model) 3: Triplet Exciton Solver (For PhOLEDs model) 6: Singlet and Triplet Exciton Solver (For TADF OLEDs model) 4: Triplet Exciton Solver with exciton blocking boundary
- d : diffusion coefficient.
- kr : radiatvie rate constant
- knr :non-radiative rate constant
- gamma : quenching coefficient.
- g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1.
Example
$callexciton 5 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1