「$callexciton」:修訂間差異
跳至導覽
跳至搜尋
無編輯摘要 |
無編輯摘要 |
||
| 第5行: | 第5行: | ||
Triplet Rate Equation: | Triplet Rate Equation: | ||
<math>\frac{dn_{ex}}{dt}=D{\nabla}^2{n_{ex}(r)}-\frac{ | <math>\frac{dn_{ex}^T}{dt}=D^S{\nabla}^2{n_{ex}^T}-(k_{r}^T+k_{nr}^T+k_{e}^Tn+k_{h}^Tp)n_{ex}^T-\frac{(\gamma_{TS}+\gamma_{TT}){n_{ex}^T}^2}{2}+G_{T}</math> | ||
於 2021年8月3日 (二) 05:15 的修訂
</math>Function for calculate the exciton distribution. We usually use this equation for organic material. Behavior of exciton will follow this equation. You can see the detail in Subroutine_exciton1D.
Singlet Rate Equation:
Triplet Rate Equation:
Where
- is diffusion coefficient.
- is relaxation time of exciton.
- is annihilation rate constant.
- is exciton generation rate.
Format
$callexciton n a 4 b c d f d kr knr gamma g
Parameter Explanation
- n : the number of tables we usually set n as 5.
- a : The type of exciton solver mode
1: Time-dependent triplet solver 123: Time-dependent triplet and singlet solver (For TADF OLEDs model) 3: Triplet Exciton Solver (For PhOLEDs model) 6: Singlet and Triplet Exciton Solver (For TADF OLEDs model) 4: Triplet Exciton Solver with exciton blocking boundary
- b : Start time (For time-dependent solver)
- c : dt (For time-dependent solver)
- d : End time (For time-dependent solver)
- e : savenum (For time-dependent solver)
- D : diffusion coefficient.
- kr : radiatvie rate constant
- knr :non-radiative rate constant
- gamma : quenching coefficient.
- g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1.
Example
$callexciton 5 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1
static TTA model (mode 7)
Format
$callexciton 20 7 1 1 DS DT krS knrS krT knrT kisc krisc keS khS keT khT kST gammaTS gammaTT a DrefS DrefT ES ET
Parameter Explanation ...