「$callexciton」:修訂間差異
跳至導覽
跳至搜尋
無編輯摘要 |
無編輯摘要 |
||
| 第2行: | 第2行: | ||
Singlet Rate Equation: | Singlet Rate Equation: | ||
<math>\frac{S}{dt}=D^S{\nabla}^2{S}-(k_{r}^S+k_{nr}^S+k_{e}^Sn+k_{h}^Sp+k_{TS}T) | <math>\frac{S}{dt}=D^S{\nabla}^2{S}-(k_{r}^S+k_{nr}^S+k_{e}^Sn+k_{h}^Sp+k_{TS}T)S+\alpha\frac{\gamma_{TS}}{2}{T}^2+G_{S}</math> | ||
Triplet Rate Equation: | Triplet Rate Equation: | ||
| 第9行: | 第9行: | ||
'''<big><big>Physical Mechanics</big></big>'''<br /> | '''<big><big>Physical Mechanics</big></big>'''<br /> | ||
<big>1. Exciton Diffusion: <math>D^S{\nabla}^2{n_{ex}}</math></big> | <big>1. Exciton Diffusion: <math>D^S{\nabla}^2{n_{ex}}</math></big> | ||
<big>2. Exciton Quenching: <math>(k_{r}+k_{nr})n_{ex}</math></big> | <big>2. Exciton Quenching: <math>(k_{r}+k_{nr})n_{ex}</math></big> | ||
<big>3. Singlet-Polaron Quenching: <math>(k_{e}^Sn+k_{h}^Sp)S</math></big> | |||
<big>4. Triplet-Polaron Quenching: <math>(k_{e}^Tn+k_{h}^Tp)T</math></big> | |||
Where | Where | ||
於 2021年8月17日 (二) 02:42 的修訂
</math>Function for calculate the exciton distribution. We usually use this equation for organic material. Behavior of exciton will follow this equation. You can see the detail in Subroutine_exciton1D.
Singlet Rate Equation:
Triplet Rate Equation:
Physical Mechanics
1. Exciton Diffusion:
2. Exciton Quenching:
3. Singlet-Polaron Quenching:
4. Triplet-Polaron Quenching:
Where
- is diffusion coefficient.
- is relaxation time of exciton.
- is annihilation rate constant.
- is exciton generation rate.
Format
$callexciton n a 4 b c d f d kr knr gamma g
Parameter Explanation
- n : the number of tables we usually set n as 5.
- a : The type of exciton solver mode
1: Time-dependent triplet solver 123: Time-dependent triplet and singlet solver (For TADF OLEDs model) 3: Triplet Exciton Solver (For PhOLEDs model) 6: Singlet and Triplet Exciton Solver (For TADF OLEDs model) 4: Triplet Exciton Solver with exciton blocking boundary 7: Singlet-Triplet Exciton Solver (For TTF/TADF OLEDs) 71: Time-dependent singlet-triplet exciton solver with pumping time (For TTF/TADF OLEDs) 711: Time-dependent singlet-triplet exciton solver (For TTF/TADF's TrEL and TRPL spectrum)
- b : Start time (For time-dependent solver)
- c : dt (For time-dependent solver)
- d : End time (For time-dependent solver)
- e : savenum (For time-dependent solver)
- D : diffusion coefficient.
- kr : radiatvie rate constant
- knr :non-radiative rate constant
- gamma : quenching coefficient.
- g : generation rate if you wanna let whole recombination rate change into exciton you should set g as 1.
Example
$callexciton 5 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1 2e-14 20000 3000 1e-12 1
static TTA model (mode 7)
Format
$callexciton 20 7 1 1 DS DT krS knrS krT knrT kisc krisc keS khS keT khT kST gammaTS gammaTT a DrefS DrefT ES ET
Parameter Explanation ...
Output Format
*.1DexQE
V I Sr Snr Tr Tnr Sisc Tisc KeS KhS keT khT kts Sann TSA TTA sumSQE sumTQE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
sumSQE+sumTQE should equal to 1.