"*.fet" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
行 14: 行 14:
 
<math> x</math> <math> y</math> <math> Ec</math> <math> Error</math> <math> n</math> <math> p </math> <math>Nda</math> <math> N_{imp}</math> <math> E_{fn}</math> <math> E_{fp} </math> <math>Traps</math> <math> Generation </math> <math>R_{rad}</math> <math>R_{nonrad}</math> <math>R_{auger}</math> <math> T</math> <math>Ev </math> <math>\frac{1}{u_{Ec,1}}</math> <math>\frac{1}{u_{Ev,1}}</math> <math>\frac{1}{u_{Ev,2}}</math> <math> R_{Exciton}</math> <math>Region_{ID} </math> <math>\frac{1}{u_{Ec,2}}</math> <math>Ec_{1,strained}</math> <math>Ec_{2,strained}</math> <math>Ev_{1,strained}</math> <math>Ev_{2,strained}</math> <math>n_{1st}</math> <math>n_{2nd}</math> <math>p_{hh,1st}</math> <math>p_{lh,2nd}</math> <math>R_{Rad,e-hh}</math> <math>R_{Rad,e-lh}</math> <math>\int^{y_T}_{y_B} Jn_{x} dy</math> <math>\int^{x_R}_{x_L} Jn_{y} dx</math> <math>\int^{y_T}_{y_B} Jp_{x} dy</math> <math>\int^{x_R}_{x_L} Jp_{y} dx</math>
 
<math> x</math> <math> y</math> <math> Ec</math> <math> Error</math> <math> n</math> <math> p </math> <math>Nda</math> <math> N_{imp}</math> <math> E_{fn}</math> <math> E_{fp} </math> <math>Traps</math> <math> Generation </math> <math>R_{rad}</math> <math>R_{nonrad}</math> <math>R_{auger}</math> <math> T</math> <math>Ev </math> <math>\frac{1}{u_{Ec,1}}</math> <math>\frac{1}{u_{Ev,1}}</math> <math>\frac{1}{u_{Ev,2}}</math> <math> R_{Exciton}</math> <math>Region_{ID} </math> <math>\frac{1}{u_{Ec,2}}</math> <math>Ec_{1,strained}</math> <math>Ec_{2,strained}</math> <math>Ev_{1,strained}</math> <math>Ev_{2,strained}</math> <math>n_{1st}</math> <math>n_{2nd}</math> <math>p_{hh,1st}</math> <math>p_{lh,2nd}</math> <math>R_{Rad,e-hh}</math> <math>R_{Rad,e-lh}</math> <math>\int^{y_T}_{y_B} Jn_{x} dy</math> <math>\int^{x_R}_{x_L} Jn_{y} dx</math> <math>\int^{y_T}_{y_B} Jp_{x} dy</math> <math>\int^{x_R}_{x_L} Jp_{y} dx</math>
   
<math>\int^{y_T}_{y_B} Jn_{x} dy</math> Mean in each node point, the current flow in the x direction through at point is the integration from bottom neighbor point to the top neighbor point. The integration has a weighting of current from 0 (neighbor point) to 1 (node point) with FEM algorithm
+
<math>\int^{y_T}_{y_B} Jn_{x} dy</math> Mean in each node point, the current flow in the x direction through at point is the integration from bottom neighbor point to the top neighbor point. The integration has a weighting of current from 0 (neighbor point) to 1 (node point) with FEM algorithm.
   
<math>\int^{x_R}_{x_L} Jn_{y} dx</math> Mean in each node point, the current flow in the y direction through at point is the integration from left neighbor point to the right neighbor point. The integration has a weighting of current from 0 (neighbor point) to 1 (node point) with FEM algorithm
+
<math>\int^{x_R}_{x_L} Jn_{y} dx</math> Mean in each node point, the current flow in the y direction through at point is the integration from left neighbor point to the right neighbor point. The integration has a weighting of current from 0 (neighbor point) to 1 (node point) with FEM algorithm.
  +
  +
Note that it is a integrated current density, not the current density. So it might have a larger current if the neighbor point is far away since the integration distance is longer.

於 2024年4月7日 (日) 16:41 的修訂

Format Old format for earlier version

x y Ec Error n p Nda Impurity Efn Efp Traps generation Radiative non-radiative Auger temperature Ev uofEc uofEv uofEv2 Exciton region_num


new updated version (since 2023)

 x  y  Ec  Error  n  p   Nda   N_{imp}   E_{fn}   E_{fp}   Traps     Generation   R_{rad} R_{nonrad} R_{auger}  T Ev  \frac{1}{u_{Ec,1}} \frac{1}{u_{Ev,1}}   \frac{1}{u_{Ev,2}}     R_{Exciton}    Region_{ID}     \frac{1}{u_{Ec,2}}    Ec_{1,strained}    Ec_{2,strained}    Ev_{1,strained}    Ev_{2,strained}    n_{1st}    n_{2nd}         p_{hh,1st}   p_{lh,2nd}   R_{Rad,e-hh}    R_{Rad,e-lh}


new updated version (since 2024.04)

 x  y  Ec  Error  n  p   Nda   N_{imp}   E_{fn}   E_{fp}   Traps     Generation   R_{rad} R_{nonrad} R_{auger}  T Ev  \frac{1}{u_{Ec,1}} \frac{1}{u_{Ev,1}}   \frac{1}{u_{Ev,2}}     R_{Exciton}    Region_{ID}     \frac{1}{u_{Ec,2}}    Ec_{1,strained}    Ec_{2,strained}    Ev_{1,strained}    Ev_{2,strained}    n_{1st}    n_{2nd}         p_{hh,1st}   p_{lh,2nd}   R_{Rad,e-hh}    R_{Rad,e-lh}  \int^{y_T}_{y_B} Jn_{x} dy \int^{x_R}_{x_L} Jn_{y} dx  \int^{y_T}_{y_B} Jp_{x} dy \int^{x_R}_{x_L} Jp_{y} dx

\int^{y_T}_{y_B} Jn_{x} dy Mean in each node point, the current flow in the x direction through at point is the integration from bottom neighbor point to the top neighbor point. The integration has a weighting of current from 0 (neighbor point) to 1 (node point) with FEM algorithm.

\int^{x_R}_{x_L} Jn_{y} dx Mean in each node point, the current flow in the y direction through at point is the integration from left neighbor point to the right neighbor point. The integration has a weighting of current from 0 (neighbor point) to 1 (node point) with FEM algorithm.

Note that it is a integrated current density, not the current density. So it might have a larger current if the neighbor point is far away since the integration distance is longer.