"*.vg *-pl.info" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
行 15: 行 15:
 
For n=1,C_e_N
 
For n=1,C_e_N
 
for m=1,V_HH_M
 
for m=1,V_HH_M
for Ei=0, Emax
+
for E_{\hbar\omega}=0, Emax
for Ek = <math>Ei - 5\sigma , Ei+5\sigma </math>
+
for Ek = <math>Ei - 5\sigma , Ei+5\sigma </math>
<math> fe = \frac{1}{1+exp(\frac{Ek-Efn}{k_BT})} </math>
+
<math> If Ek > E_{n,e}-E_{hh,m} then
  +
fe = \frac{1}{1+exp(\frac{Ek-Efn}{k_BT})} </math>
 
<math> fh = \frac{1}{1+exp(\frac{Efp-Ek}{k_BT})} </math>
 
<math> fh = \frac{1}{1+exp(\frac{Efp-Ek}{k_BT})} </math>
 
<math> Rsp(Ei) = Rsp(Ei) + dE * Ei * |\langle\phi_{e,n} |\phi_{hh,m} \rangle |^2 * fe * fh* \frac{1}{\sqrt{2\pi} \sigma} exp( -\frac{(Ek-Ei)^2}{2*\sigma^2}) </math>
 
<math> Rsp(Ei) = Rsp(Ei) + dE * Ei * |\langle\phi_{e,n} |\phi_{hh,m} \rangle |^2 * fe * fh* \frac{1}{\sqrt{2\pi} \sigma} exp( -\frac{(Ek-Ei)^2}{2*\sigma^2}) </math>

於 2025年1月28日 (二) 15:59 的修訂

C_e_N, V_HH_M, V_LH_L, nr , Epp
For n=1,C_e_N
  for m=1,V_HH_M
     C_{n},~ V_{hh,m}, ~|\langle \phi_{e,n},\phi_{hh,m}\rangle |^{2},~ E_{n,e}-E_{hh,m},~ E_{e,n},~E_{fn},~E_{fp},~m_{e},~m_hh, N_{2D,DOS,r} 
  end 
end
For n=1,C_e_N
  for m=1,V_LH_L
     C_{n},~ V_{lh,m}, ~|\langle \phi_{e,n},\phi_{lh,m}\rangle |^{2},~ E_{n,e}-E_{lh,m},~ E_{e,n},~E_{fn},~E_{fp},~m_{e},~m_lh, N_{2D,DOS,r} 
  end 
end

The PL of e to HH can be calculated by

Rsp=0.0 
For n=1,C_e_N
  for m=1,V_HH_M
     for E_{\hbar\omega}=0, Emax
         for Ek = Ei - 5\sigma , Ei+5\sigma   
             If Ek >  E_{n,e}-E_{hh,m} then         
             fe = \frac{1}{1+exp(\frac{Ek-Efn}{k_BT})} 
             fh = \frac{1}{1+exp(\frac{Efp-Ek}{k_BT})} 
             Rsp(Ei) = Rsp(Ei) + dE * Ei * |\langle\phi_{e,n} |\phi_{hh,m} \rangle |^2 * fe * fh* \frac{1}{\sqrt{2\pi} \sigma} exp( -\frac{(Ek-Ei)^2}{2*\sigma^2}) 
         end
     end 
  end 
end

The PL of e to LH can be calculated by

Rsp=0.0   
For n=1,C_e_N
  for m=1,V_LH_:
     for Ei=0, Emax
         for Ek = Ei - 5\sigma , Ei+5\sigma             
             fe = \frac{1}{1+exp(\frac{Ek-Efn}{k_BT})} 
             fh = \frac{1}{1+exp(\frac{Efp-Ek}{k_BT})} 
             Rsp(Ei) = Rsp(Ei) + dE * Ei * |\langle\phi_{e,n} |\phi_{hh,m} \rangle |^2 * fe * fh* \frac{1}{\sqrt{2\pi} \sigma} exp( -\frac{(Ek-Ei)^2}{2*\sigma^2}) 
         end
     end 
  end 
end