「$calculatekp」:修訂間差異
跳至導覽
跳至搜尋
無編輯摘要 |
無編輯摘要 |
||
| 第16行: | 第16行: | ||
Weighting <math>\Delta_1</math> <math>\Delta_2</math> <math>\Delta_3</math> a c <math>c_{11}</math> <math>c_{12}</math> <math>c_{13}</math> <math>c_{33}</math> <math>c_{44}</math> <math>c_{66}</math> | Weighting <math>\Delta_1</math> <math>\Delta_2</math> <math>\Delta_3</math> a c <math>c_{11}</math> <math>c_{12}</math> <math>c_{13}</math> <math>c_{33}</math> <math>c_{44}</math> <math>c_{66}</math> | ||
Weighting <math>\Delta_1</math> <math>\Delta_2</math> <math>\Delta_3</math> a c <math>c_{11}</math> <math>c_{12}</math> <math>c_{13}</math> <math>c_{33}</math> <math>c_{44}</math> <math>c_{66}</math> | Weighting <math>\Delta_1</math> <math>\Delta_2</math> <math>\Delta_3</math> a c <math>c_{11}</math> <math>c_{12}</math> <math>c_{13}</math> <math>c_{33}</math> <math>c_{44}</math> <math>c_{66}</math> | ||
Weighting <math>\Delta_1</math> <math>\Delta_2</math> <math>\Delta_3</math> a c <math>c_{11}</math> <math>c_{12}</math> <math>c_{13}</math> <math>c_{33}</math> <math>c_{44}</math> <math>c_{66}</math> | |||
..... (n layers) | ..... (n layers) | ||
<math>D_1</math> <math>D_2</math> <math>D_3</math> <math>D_4</math> <math>D_5</math> <math>D_6</math> | <math>D_1</math> <math>D_2</math> <math>D_3</math> <math>D_4</math> <math>D_5</math> <math>D_6</math> | ||
於 2017年8月29日 (二) 15:04 的修訂
$calculatekp is the command to solve 6x6 k.p Hamiltonian for nitride or wurtzite based wide bandgap materials.
$calculatekp
all
kx_nmax ky_nmax dk
A1 A2 A3 A4 A5 A6 A7
A1 A2 A3 A4 A5 A6 A7
A1 A2 A3 A4 A5 A6 A7
A1 A2 A3 A4 A5 A6 A7
..... (n layers)
Weighting a c
Weighting a c
Weighting a c
Weighting a c
..... (n layers)
.....(n layers)
Weighting is usually defined as 1 if each layer's parameters are calculated by user or GUI program.
However, if it is not equal to 1, all parameters such as a c will be weighted by
n_layer_parameters = Weighting(n_layer_parameters) + (1-Weighting)*last_layer_parameters
For example, if we have 5 layers, and weighting of the second layer is 0.5, then
=