$1Daddefmas

出自 DDCC TCAD TOOL Manual
於 2023年2月27日 (一) 15:07 由 Yrwu (對話 | 貢獻) 所做的修訂

前往: 導覽搜尋
$1Daddefmas   is the function to add additional effective mass information for electron and holes. In some cases, the electron's (holes) effective mass in different directions are different. Hence the new functions is to put additional information for the program to calculate. 
$1Daddefmas
I_effective_type 
解析失敗 (PNG 轉換失敗;請檢查是否正確安裝了 latex 與 dvipng (或 dvips + gs + convert)):  m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y} ~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y} N_e_valley..

解析失敗 (PNG 轉換失敗;請檢查是否正確安裝了 latex 與 dvipng (或 dvips + gs + convert)):  m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y} ~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y} N_e_valley..

... to N layers

I_effective_type is the input type. The default should be 1. The typical semiconductor material has heavy hole, light hole, and electron effective mass of direct band. The type 1 is used. 
For I_effective_type= 1, 解析失敗 (PNG 轉換失敗;請檢查是否正確安裝了 latex 與 dvipng (或 dvips + gs + convert)):  m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y} ~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y}~~ N_e_valley..

For I_effective_type= 2, 解析失敗 (PNG 轉換失敗;請檢查是否正確安裝了 latex 與 dvipng (或 dvips + gs + convert)):  m_{hh,z} ~~ m_{hh,x}~~ m_{hh,y}~~m_{lh,z} ~~ m_{lh,x}~~ m_{lh,y} ~~m_{e,z} ~~ m_{e,x}~~ m_{hh,y}~~ N_e_valley~~m_{e,z,2nd valley} ~~ m_{e,x,2nd valley}~~ m_{hh,y,2nd valley}~~ N_e_valley2..

z is the calculation direction of 1D program. If there is a QW, z is the confined direction in the 1D program. 

For example, for a material like GaN effective mass for HH is 1.8, LH=0.17, and the electron is 0.21 in the growth direction and 0.2 in the x,y direction. We set

 $1Daddefmas
 1 
 1.8 1.8 1.8 0.17 0.17 0.17 0.21 0.2 0.2
 1.8 1.8 1.8 0.17 0.17 0.17 0.21 0.2 0.2
 1.8 1.8 1.8 0.17 0.17 0.17 0.21 0.2 0.2 
 .... to N layers

For example, for a material effective mass for HH_growth direction is 1.4 in the other two directions are 0.7 and 0.9, LH=0.17, and electron is 0.21 in the growth direction and 0.2 in the x,y direction, we set

 $1Daddefmas
 1 
 1.4 0.7 0.9 0.17 0.17 0.17 0.21 0.2 0.2
 1.4 0.7 0.9 0.17 0.17 0.17 0.21 0.2 0.2
 1.4 0.7 0.9 0.17 0.17 0.17 0.21 0.2 0.2 
 .... to N layers

Actually, the simulation program, it mainly uses the density of state effective mass. The different direction's effective mass will be put together as

For conduction band:
  m_{dos}^{*} = (N_{valley})^{2/3} ( m_x m_y m_z)^{1/3} 
For the valence band 
   m_{HH, dos}^{*} = ( m_{hh,x} m_{hh,y} m_{hh,z})^{1/3}  
   m_{LH, dos}^{*} = ( m_{lh,x} m_{lh,y} m_{lh,z})^{1/3}  
   m_{p, dos}^{*} = ( m_{hh,dos}^{3/2}+ m_{hh,dos}^{3/2} ) ^{2/3} 

For the Schrodinger solver, it will use m_z to calculate the quantum confinement effects. The equation will solve

 {- \nabla \frac{1}{m_{z}} \nabla + V } \psi = E \psi