$usemubydopeT

出自 DDCC TCAD TOOL Manual
於 2018年5月23日 (三) 10:21 由 Yrwu (對話 | 貢獻) 所做的修訂

前往: 導覽搜尋

$usemubydopeT is to enable the temperature and carrier density dependent mobility module with the predefined function. The function is designed for each region. So if total n regions is used, then you will need to setup n regions. The format is

$usemubydopeT
Type_R1  p1 p2 p3 p4 p5.....p12
Type_R2  p1 p2 p3 p4 p5.....p12
Type_R3  p1 p2 p3 p4 p5.....p12
...
...
... 
Type_RN  p1 p2 p3 p4 .....p12


Type

0: Use the original nonradiative lifetime defined in parameter setions
1:  \mu_{n} = p1 \times (\frac{T}{p3}) ^{p2}  , and  \mu_{p} = \mu_{n} 
2:  \mu_{n} = p1 \times (\frac{T}{p5}) ^{p3}  , and  \mu_{n} = p2 \times (\frac{T}{p5}) ^{p4} 
3:  \mu_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right)  , and  \mu_{p} = \tau_{n} 
4:  \mu_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right)  , and  \mu_{p} = p5 +  \left(\frac{P6-P5}{1+(\frac{N_{a}}{p7}) ^{p8}} \right) 
13:  \mu_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) ,  \mu_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6}  , and  \tau_{p} = \tau_{n} 
24:  \mu_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}}{p3}) ^{p4}} \right) ,  \mu_{n} = \tau_{n,0} \times (\frac{T}{p5}) ^{p6}  , and 
     \mu_{p,0} = p7 +  \left(\frac{P8-P7}{1+(\frac{N_{d}}{p9}) ^{p10}} \right) ,  \mu_{p} = \tau_{p,0} \times (\frac{T}{p11}) ^{p12} .

If the mobility is for activated dopant density then

31:  \mu_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right)  , and  \mu_{p} = \mu_{n} 
41:  \mu_{n} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right)  , and  \mu_{p} = p5 +  \left(\frac{P6-P5}{1+(\frac{N_{a}^{-}}{p7}) ^{p8}} \right) 
131:  \mu_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) ,  \mu_{n} = \mu{n,0} \times (\frac{T}{p5}) ^{p6}  , and  \tau_{p} = \tau_{n} 
241:  \mu_{n,0} = p1 +  \left(\frac{P2-P1}{1+(\frac{N_{d}^{+}}{p3}) ^{p4}} \right) ,  \mu_{n} = \mu_{n,0} \times (\frac{T}{p5}) ^{p6}  , and 
     \mu_{p,0} = p7 +  \left(\frac{P8-P7}{1+(\frac{N_{a}^{-}}{p9}) ^{p10}} \right) ,  \mu_{p} = \mu_{p,0} \times (\frac{T}{p11}) ^{p12} .