*.vg *-pl.info

出自 DDCC TCAD TOOL Manual
於 2025年1月28日 (二) 16:27 由 Yrwu (對話 | 貢獻) 所做的修訂

(差異) ←上個修訂 | 最新修訂 (差異) | 下個修訂→ (差異)
前往: 導覽搜尋
C_e_N, V_HH_M, V_LH_L, nr , Epp
For n=1,C_e_N
  for m=1,V_HH_M
     C_{n},~ V_{hh,m}, ~|\langle \phi_{e,n},\phi_{hh,m}\rangle |^{2},~ E_{n,e}-E_{hh,m},~ E_{e,n},~E_{fn},~E_{fp},~m_{e},~m_hh, N_{2D,DOS,r} 
  end 
end
For n=1,C_e_N
  for m=1,V_LH_L
     C_{n},~ V_{lh,m}, ~|\langle \phi_{e,n},\phi_{lh,m}\rangle |^{2},~ E_{n,e}-E_{lh,m},~ E_{e,n},~E_{fn},~E_{fp},~m_{e},~m_lh, N_{2D,DOS,r} 
  end 
end


The PL of e to HH can be calculated by

Rsp=0.0 
 const = \frac{1}{3} \frac{e_{0}^{2} * n_{r}}{2\pi\epsilon_{0}*m_{0}*c^3\hbar^2} * Ep   
 N_{2D} = \frac{ m_r^* }{\pi\hbar^2} 
For~~ n=1,~C_{e,n} 
  for~~ m=1,V_{HH,m} 
     for~~ E_{\hbar\omega}=0,~~ Emax   
         for~~ Ek = Ei - 5\sigma~~ ,~~ Ei+5\sigma   
             If Ek >  E_{n,e}-E_{hh,m} =E_{g,eff} then      
                Ee =  E_{e,n} +(Ek-E_{g,eff}) * \frac{m_r^{*}}{m_{e}^{*}}  
                Ehh = E_{hh,m}-(Ek-E_{g,eff}) * \frac{m_r^{*}}{m_{hh}^{*}}          
                fe = \frac{1}{1+exp(\frac{Ee-Efn}{k_BT})} 
                fh = \frac{1}{1+exp(\frac{Efp-Ehh}{k_BT})} 
                Rsp(Ei) = Rsp(Ei) + const*dE * Ei * |\langle\phi_{e,n} |\phi_{hh,m} \rangle |^2 * fe * fh* \frac{1}{\sqrt{2\pi} \sigma} exp( -\frac{(Ek-Ei)^2}{2*\sigma^2}) * N_{2D} 
            end ~if
         end
     end 
  end 
end


The PL of e to LH can be calculated by

Rsp=0.0 
For~~ n=1,~C_{e,n} 
  for~~ m=1,V_{LH,m} 
     for~~ E_{\hbar\omega}=0,~~ Emax   
         for~~ Ek = Ei - 5\sigma~~ ,~~ Ei+5\sigma   
             If Ek >  E_{g,eff} = E_{n,e}-E_{lh,m}       
                Ee =  E_{e,n} +(Ek-E_{g,eff}) * \frac{m_r^{*}}{m_{e}^{*}}  
                Elh = E_{lh,m}-(Ek-E_{g,eff}) * \frac{m_r^{*}}{m_{lh}^{*}}          
                fe = \frac{1}{1+exp(\frac{Ee-Efn}{k_BT})} 
                fh = \frac{1}{1+exp(\frac{Efp-Elh}{k_BT})} 
                Rsp(Ei) = Rsp(Ei) + const*dE * Ei * |\langle\phi_{e,n} |\phi_{lh,m} \rangle |^2 * fe * fh* \frac{1}{\sqrt{2\pi} \sigma} exp( -\frac{(Ek-Ei)^2}{2*\sigma^2}) * N_{2D} 
            end ~~if
         end
     end 
  end 
end