Formula for doping and Temperature-dependent mobility model

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋

In the Material database, the T and doping dependent mobility model. The parameters are

mu_max_n, mu_min_n, N_g_n, gamma_n, alpha_n, beta_n, mu_max_p, mu_min_p, N_g_p, gamma_p, alpha_p, beta_p

which are

\mu_{n,max}, ~\mu_{n,min}, ~N_{g}, ~ \gamma_{n},~ \alpha_{n},~ \beta_{n}, ~ \mu_{p,max}, ~\mu_{p,min}, ~N_{g}, ~ \gamma_{p},~ \alpha_{p},~ \beta_{p}
The mobility are calculated by: 
 B_{n} = \frac{((\mu_{n,max} - \mu_{n,min}) * |N_{d,a}|^{\gamma_{n}})}{ (\mu_{n,max}*N_{g,n}^{\gamma_{n}}+\mu_{n,min}*|N_{d,a}|^{\gamma_{n}} } )
 \mu_{n}= \frac{\mu_{n,max} * (T/T_{300})^{\beta_{n}} }{ B_{n} + (T/T_{300})^{\alpha_n+\beta_{n}} }  
 B_{p} = \frac{((\mu_{p,max} - \mu_{p,min}) * |N_{d,a}|^{\gamma_{p}})}{ (\mu_{p,max}*N_{g,p}^{\gamma_{p}}+\mu_{p,min}*|N_{d,a}|^{\gamma_{p}} } )
 \mu_{p}= \frac{\mu_{p,max} * (T/T_{300})^{\beta_{p}} }{ B_{p} + (T/T_{300})^{\alpha_p+\beta_{p}} }