檢視 $ifapplyEgofT 的原始碼
←
$ifapplyEgofT
跳至導覽
跳至搜尋
由於以下原因,您無權編輯此頁面:
您請求的操作只有這個群組的使用者能使用:
使用者
您可以檢視並複製此頁面的原始碼。
Since the DDCC has the capability of solving the Poisson, drift-diffusion, and thermal solver self-consistently. It will need to consider the possibility of bandgap narrowing with temperature. Therefore, we can apply the temperature dependent coefficients for the material's bandgap. Usually the temperature dependent bandgap can be expressed as: <br> <math> Eg(T) = Eg(0) - \frac{\gamma T^{2} }{ T + \beta} </math> Therefore, to enable the temperature dependent Eg in the simulation, we need to add <br>. $ifapplyEgofT <math>Eg(0)_{1} </math> <math> \gamma </math> <math> \beta </math> <math>Eg(0)_{2} </math> <math> \gamma </math> <math> \beta </math> <math>Eg(0)_{3} </math> <math> \gamma </math> <math> \beta </math> <math>Eg(0)_{4} </math> <math> \gamma </math> <math> \beta </math> ... ... to layer N If some material's coefficient cannot be found, please make <math> \gamma = 0 </math>. So the program will keep the bandgap of this region as constant. <br> Note that <br> Eg(0) is the Eg at 0K, not 300K. So if the parameters source is not the same, <math> Eg(300) = Eg(0) - \frac{\gamma 300^{2} }{ 300 + \beta} </math> may not be the same as the Eg in the [[$parameters]]. Please be careful to use this command. <br><br> For advanced users who use libmodpar.f90. This function may have problem if the bandgap is changed in libmodpar.f90
返回到「
$ifapplyEgofT
」。
導覽選單
個人工具
登入
命名空間
頁面
討論
臺灣正體
視圖
閱讀
檢視原始碼
檢視歷史
更多
搜尋
導覽
首頁
近期變更
隨機頁面
MediaWiki說明
工具
連結至此的頁面
相關變更
特殊頁面
頁面資訊