檢視 $ifapplyEgofT 的原始碼
←
$ifapplyEgofT
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
使用者
您可以檢視並複製此頁面的原始碼。
Since the DDCC has the capability of solving the Poisson, drift-diffusion, and thermal solver self-consistently. It will need to consider the possibility of bandgap narrowing with temperature. Therefore, we can apply the temperature dependent coefficients for the material's bandgap. Usually the temperature dependent bandgap can be expressed as: <br> <math> Eg(T) = Eg(0) - \frac{\gamma \times T^{2} }{ T + \beta} </math> Therefore, to enable the temperature dependent Eg in the simulation, we need to add <br>. $ifapplyEgofT <math>Eg(0)_{1} </math> <math> \gamma </math> <math> \beta </math> <math>Eg(0)_{2} </math> <math> \gamma </math> <math> \beta </math> <math>Eg(0)_{3} </math> <math> \gamma </math> <math> \beta </math> <math>Eg(0)_{4} </math> <math> \gamma </math> <math> \beta </math> ... ... to layer N If some material's coefficient cannot be found, please make <math> \gamma = 0 </math>. So the program will keep the bandgap of this region as constant. <br> Note that <br> Eg(0) is the Eg at 0K, not 300K. So if the parameters source is not the same, <math> Eg(300) = Eg(0) - \frac{\gamma \times 300^{2} }{ 300 + \beta} </math> may not be the same as the Eg in the [[$parameters]]. Please be careful to use this command. <br><br> For advanced users who use libmodpar.f90. This function may have problem if the bandgap is changed in libmodpar.f90
返回至
$ifapplyEgofT
。
導覽選單
個人工具
登入
命名空間
頁面
討論
變體
檢視
閱讀
檢視原始碼
檢視歷史
更多
搜尋
導覽
首頁
最近變更
隨機頁面
說明
工具
連結至此的頁面
相關變更
特殊頁面
頁面資訊