檢視 $ifapplyEgofT 的原始碼
←
$ifapplyEgofT
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
使用者
您可以檢視並複製此頁面的原始碼。
Since the DDCC has the capability of solving the Poisson, drift-diffusion, and thermal solver self-consistently. It will need to consider the possibility of bandgap narrowing with temperature. Therefore, we can apply the temperature-dependent coefficients for the material's bandgap. Usually, the temperature-dependent bandgap can be expressed as: <br> <math> Eg(T) = Eg(0) - \frac{\gamma \times T^{2} }{ T + \beta} </math> In the program, we don't set Eg(0), instead, we set Eg(300) <math> Eg(T) = Eg(300) + \frac{\gamma \times 300^{2} }{ 300 + \beta} - \frac{\gamma \times T^{2} }{ T + \beta} </math> Therefore, to enable the temperature-dependent Eg in the simulation, we need to add <br>. $ifapplyEgofT <math>Eg(300)_{1} </math> <math> \gamma </math> <math> \beta </math> <math>Eg(300)_{2} </math> <math> \gamma </math> <math> \beta </math> <math>Eg(300)_{3} </math> <math> \gamma </math> <math> \beta </math> <math>Eg(300)_{4} </math> <math> \gamma </math> <math> \beta </math> ... ... to layer N If some material's coefficient cannot be found, please make <math> \gamma = 0 </math>. So the program will keep the bandgap of this region as constant. <br> Note that <br> Eg(300) is the Eg at 300K. With this modified equation, we can make the Eg is always the same as the original Eg at 300K <br><br> For advanced users who use libmodpar.f90. This function may have a problem if the bandgap is changed in libmodpar.f90 The related commands are: [[$ifapplytauofT]], [[$ifapplymuofT]], [[$ifapplyEgofT]], [[$ifTversusJ]]
返回至
$ifapplyEgofT
。
導覽選單
個人工具
登入
命名空間
頁面
討論
變體
檢視
閱讀
檢視原始碼
檢視歷史
更多
搜尋
導覽
首頁
最近變更
隨機頁面
說明
工具
連結至此的頁面
相關變更
特殊頁面
頁面資訊