"$usemunpfunc" 修訂間的差異
出自 DDCC TCAD TOOL Manual
行 29: | 行 29: | ||
$usemunpfunc |
$usemunpfunc |
||
− | 11 μe βe μh βh <math>\ |
+ | 11 μe βe μh βh <math>\v_{n,sat}</math> <math>\v_{p,sat}</math> |
行 39: | 行 39: | ||
* μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math> |
* μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math> |
||
* βh : hole beta. <math>(eV^{-1/2})</math> |
* βh : hole beta. <math>(eV^{-1/2})</math> |
||
− | * <math>\ |
+ | * <math>\v_{n,sat}</math> saturate electron velocity (cm/s) |
− | * <math>\ |
+ | * <math>\v_{p,sat}</math> saturate hole velocity (cm/s) |
<math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math> |
<math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math> |
||
− | <math> \frac{1}{\mu_n} = \frac{1}{\mu_{n,temp}} + \frac{1}{\mu_{n,sat}} </math> |
||
+ | |||
− | <math> \ |
+ | If <math> \mu_{n,temp} \times E > \v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} </math> |
+ | If <math> \mu_{n,temp} \times E > \v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} </math> |
於 2018年3月26日 (一) 10:19 的修訂
Function for organic material. We usually assume the carrier mobility is depend on electrical field and follow Poole-Frenkel field dependent mobility equation.
Mobility follow this equation
Where
- is the zero-field mobility
- is the factor of mobility increasing
- is the electric field.
Format
$usemunpfunc 1 μe βe μh βh
Parameter Explanation
,
- μe : electron zero-field mobility.
- βe : electron beta.
- μh : hole zero-field mobility.
- βh : hole beta.
$usemunpfunc 11 μe βe μh βh 解析失敗 (不明函數 "\v"): \v_{n,sat} 解析失敗 (不明函數 "\v"): \v_{p,sat}
Parameter Explanation
- μe : electron zero-field mobility.
- βe : electron beta.
- μh : hole zero-field mobility.
- βh : hole beta.
- 解析失敗 (不明函數 "\v"): \v_{n,sat} saturate electron velocity (cm/s)
- 解析失敗 (不明函數 "\v"): \v_{p,sat} saturate hole velocity (cm/s)
,
If 解析失敗 (不明函數 "\v"): \mu_{n,temp} \times E > \v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} If 解析失敗 (不明函數 "\v"): \mu_{n,temp} \times E > \v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E}