"$usemunpfunc" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
行 39: 行 39:
 
* μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math>
 
* μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math>
 
* βh : hole beta. <math>(eV^{-1/2})</math>
 
* βh : hole beta. <math>(eV^{-1/2})</math>
* <math>\v_{n,sat}</math> saturate electron velocity (cm/s)
+
* <math>v_{n,sat}</math> saturate electron velocity (cm/s)
* <math>\v_{p,sat}</math> saturate hole velocity (cm/s)
+
* <math>v_{p,sat}</math> saturate hole velocity (cm/s)
 
<math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math>
 
<math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math>
   
If <math> \mu_{n,temp} \times E > \v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} </math>
+
If <math> \mu_{n,temp} \times E > v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} </math>
If <math> \mu_{n,temp} \times E > \v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} </math>
+
If <math> \mu_{n,temp} \times E > v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} </math>

於 2018年3月26日 (一) 10:19 的修訂

Function for organic material. We usually assume the carrier mobility is depend on electrical field and follow Poole-Frenkel field dependent mobility equation.

Mobility follow this equation


\mu=\mu_0 exp(\beta\sqrt{E})

Where 

  • \mu_0 is the zero-field mobility
  • \beta is the factor of mobility increasing
  • E is the electric field.


Format

$usemunpfunc
1 μe βe μh βh


Parameter Explanation

\mu_n=\mu_0 exp(\beta\sqrt{E}),  \mu_p=\mu_0 exp(\beta\sqrt{E}) 
  • μe : electron zero-field mobility. (cm^{2}eV^{-1}s^{-1})
  • βe : electron beta. (eV^{-1/2})
  • μh : hole zero-field mobility. (cm^{2}eV^{-1}s^{-1})
  • βh : hole beta. (eV^{-1/2})


$usemunpfunc
11 μe βe μh βh 解析失敗 (不明函數 "\v"): \v_{n,sat}
 解析失敗 (不明函數 "\v"): \v_{p,sat}


Parameter Explanation


  • μe : electron zero-field mobility. (cm^{2}eV^{-1}s^{-1})
  • βe : electron beta. (eV^{-1/2})
  • μh : hole zero-field mobility. (cm^{2}eV^{-1}s^{-1})
  • βh : hole beta. (eV^{-1/2})
  • v_{n,sat} saturate electron velocity (cm/s)
  • v_{p,sat} saturate hole velocity (cm/s)
 \mu_{n,temp}=\mu_0 exp(\beta\sqrt{E}),  \mu_{p,temp}=\mu_0 exp(\beta\sqrt{E}) 
 If 解析失敗 (不明函數 "\v"):  \mu_{n,temp} \times E > v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} 

 If 解析失敗 (不明函數 "\v"):  \mu_{n,temp} \times E > v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E}