"$usemunpfunc" 修訂間的差異
出自 DDCC TCAD TOOL Manual
Jameshuang (對話 | 貢獻) (已建立頁面,內容為 "Function for organic material. We usually assume the carrier mobility is depend on electrical field and follow Poole-Frenkel field dependent mobility equation. <bi...") |
|||
(未顯示由 2 位使用者於中間所作的 8 次修訂) | |||
行 1: | 行 1: | ||
Function for organic material. We usually assume the carrier mobility is depend on electrical field and follow Poole-Frenkel field dependent mobility equation. |
Function for organic material. We usually assume the carrier mobility is depend on electrical field and follow Poole-Frenkel field dependent mobility equation. |
||
+ | Mobility follow this equation |
||
⚫ | |||
+ | |||
+ | <math>\mu=\mu_0 exp(\beta\sqrt{E})</math> |
||
+ | |||
+ | Where |
||
+ | * <math>\mu_0</math> is the zero-field mobility |
||
+ | * <math>\beta</math> is the factor of mobility increasing |
||
+ | * <math>E</math> is the electric field. |
||
+ | |||
+ | |||
+ | |||
⚫ | |||
$usemunpfunc |
$usemunpfunc |
||
− | 1 mue0 betae muh0 betah |
||
+ | 1 μe βe μh βh |
||
+ | |||
+ | |||
+ | '''<big><big>Parameter Explanation</big></big>''' |
||
+ | |||
+ | <math>\mu_n=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_p=\mu_0 exp(\beta\sqrt{E})</math> |
||
+ | * μe : electron zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math> |
||
+ | * βe : electron beta. <math>(eV^{-1/2})</math> |
||
+ | * μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math> |
||
+ | * βh : hole beta. <math>(eV^{-1/2})</math> |
||
+ | |||
+ | |||
+ | $usemunpfunc |
||
+ | 11 μe βe μh βh <math>v_{n,sat}</math> <math>v_{p,sat}</math> |
||
+ | |||
+ | |||
+ | '''<big><big>Parameter Explanation</big></big>''' |
||
+ | |||
+ | |||
+ | * μe : electron zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math> |
||
+ | * βe : electron beta. <math>(eV^{-1/2})</math> |
||
+ | * μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math> |
||
+ | * βh : hole beta. <math>(eV^{-1/2})</math> |
||
+ | * <math>v_{n,sat}</math> saturate electron velocity (cm/s) |
||
+ | * <math>v_{p,sat}</math> saturate hole velocity (cm/s) |
||
+ | <math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math> |
||
− | parameter explanation |
||
+ | If <math> \mu_{n,temp} \times E > v_{n,sat}, then \mu_n = \frac{v_{n,sat}}{E} </math> |
||
− | mue0 u8efbc9aelectron mobility at e 0 unit cm 2 ev -1 s -1 |
||
+ | If <math> \mu_{p,temp} \times E > v_{p,sat}, then \mu_p = \frac{v_{p,sat}}{E} </math> |
||
− | betae u8efbc9aelectron beta unit ev -0.5 |
||
− | muh0 u8efbc9ahole mobility at e 0 unit cm 2 ev -1 s -1 |
||
− | betah u8efbc9ahole beta unit ev -0.5 |
於 2018年3月26日 (一) 10:21 的最新修訂
Function for organic material. We usually assume the carrier mobility is depend on electrical field and follow Poole-Frenkel field dependent mobility equation.
Mobility follow this equation
Where
- is the zero-field mobility
- is the factor of mobility increasing
- is the electric field.
Format
$usemunpfunc 1 μe βe μh βh
Parameter Explanation
,
- μe : electron zero-field mobility.
- βe : electron beta.
- μh : hole zero-field mobility.
- βh : hole beta.
$usemunpfunc 11 μe βe μh βh
Parameter Explanation
- μe : electron zero-field mobility.
- βe : electron beta.
- μh : hole zero-field mobility.
- βh : hole beta.
- saturate electron velocity (cm/s)
- saturate hole velocity (cm/s)
,
If If