"$usemunpfunc" 修訂間的差異
出自 DDCC TCAD TOOL Manual
(未顯示同一使用者於中間所作的 5 次修訂) | |||
行 29: | 行 29: | ||
$usemunpfunc |
$usemunpfunc |
||
− | 11 μe βe μh βh <math> |
+ | 11 μe βe μh βh <math>v_{n,sat}</math> <math>v_{p,sat}</math> |
'''<big><big>Parameter Explanation</big></big>''' |
'''<big><big>Parameter Explanation</big></big>''' |
||
− | type: <br> |
||
+ | |||
* μe : electron zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math> |
* μe : electron zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math> |
||
行 39: | 行 39: | ||
* μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math> |
* μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math> |
||
* βh : hole beta. <math>(eV^{-1/2})</math> |
* βh : hole beta. <math>(eV^{-1/2})</math> |
||
− | * <math> |
+ | * <math>v_{n,sat}</math> saturate electron velocity (cm/s) |
− | * <math> |
+ | * <math>v_{p,sat}</math> saturate hole velocity (cm/s) |
<math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math> |
<math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math> |
||
⚫ | |||
+ | |||
⚫ | |||
+ | If <math> \mu_{p,temp} \times E > v_{p,sat}, then \mu_p = \frac{v_{p,sat}}{E} </math> |
於 2018年3月26日 (一) 10:21 的最新修訂
Function for organic material. We usually assume the carrier mobility is depend on electrical field and follow Poole-Frenkel field dependent mobility equation.
Mobility follow this equation
Where
- is the zero-field mobility
- is the factor of mobility increasing
- is the electric field.
Format
$usemunpfunc 1 μe βe μh βh
Parameter Explanation
,
- μe : electron zero-field mobility.
- βe : electron beta.
- μh : hole zero-field mobility.
- βh : hole beta.
$usemunpfunc 11 μe βe μh βh
Parameter Explanation
- μe : electron zero-field mobility.
- βe : electron beta.
- μh : hole zero-field mobility.
- βh : hole beta.
- saturate electron velocity (cm/s)
- saturate hole velocity (cm/s)
,
If If