"$usemunpfunc" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
 
(未顯示同一使用者於中間所作的 5 次修訂)
行 29: 行 29:
   
 
$usemunpfunc
 
$usemunpfunc
11 μe βe μh βh <math>\mu_{n,sat}</math> <math>\mu_{p,sat}</math>
+
11 μe βe μh βh <math>v_{n,sat}</math> <math>v_{p,sat}</math>
   
   
 
'''<big><big>Parameter Explanation</big></big>'''
 
'''<big><big>Parameter Explanation</big></big>'''
type: <br>
 
  +
   
 
* μe : electron zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math>
 
* μe : electron zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math>
行 39: 行 39:
 
* μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math>
 
* μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math>
 
* βh : hole beta. <math>(eV^{-1/2})</math>
 
* βh : hole beta. <math>(eV^{-1/2})</math>
* <math>\mu_{n,sat}</math> saturate electron mobility
+
* <math>v_{n,sat}</math> saturate electron velocity (cm/s)
* <math>\mu_{p,sat}</math> saturate hole mobility
+
* <math>v_{p,sat}</math> saturate hole velocity (cm/s)
 
<math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math>
 
<math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math>
<math> \frac{1}{\mu_n} = \frac{1}{\mu_{n,temp}} + \frac{1}{\mu_{n,sat}} </math>
 
  +
 
If <math> \mu_{n,temp} \times E > v_{n,sat}, then \mu_n = \frac{v_{n,sat}}{E} </math>
  +
If <math> \mu_{p,temp} \times E > v_{p,sat}, then \mu_p = \frac{v_{p,sat}}{E} </math>

於 2018年3月26日 (一) 10:21 的最新修訂

Function for organic material. We usually assume the carrier mobility is depend on electrical field and follow Poole-Frenkel field dependent mobility equation.

Mobility follow this equation


\mu=\mu_0 exp(\beta\sqrt{E})

Where 

  • \mu_0 is the zero-field mobility
  • \beta is the factor of mobility increasing
  • E is the electric field.


Format

$usemunpfunc
1 μe βe μh βh


Parameter Explanation

\mu_n=\mu_0 exp(\beta\sqrt{E}),  \mu_p=\mu_0 exp(\beta\sqrt{E}) 
  • μe : electron zero-field mobility. (cm^{2}eV^{-1}s^{-1})
  • βe : electron beta. (eV^{-1/2})
  • μh : hole zero-field mobility. (cm^{2}eV^{-1}s^{-1})
  • βh : hole beta. (eV^{-1/2})


$usemunpfunc
11 μe βe μh βh v_{n,sat} v_{p,sat}


Parameter Explanation


  • μe : electron zero-field mobility. (cm^{2}eV^{-1}s^{-1})
  • βe : electron beta. (eV^{-1/2})
  • μh : hole zero-field mobility. (cm^{2}eV^{-1}s^{-1})
  • βh : hole beta. (eV^{-1/2})
  • v_{n,sat} saturate electron velocity (cm/s)
  • v_{p,sat} saturate hole velocity (cm/s)
 \mu_{n,temp}=\mu_0 exp(\beta\sqrt{E}),  \mu_{p,temp}=\mu_0 exp(\beta\sqrt{E}) 
 If  \mu_{n,temp} \times E > v_{n,sat}, then \mu_n = \frac{v_{n,sat}}{E} 
 If  \mu_{p,temp} \times E > v_{p,sat}, then \mu_p = \frac{v_{p,sat}}{E}