"$usemunpfunc" 修訂間的差異

出自 DDCC TCAD TOOL Manual
前往: 導覽搜尋
行 43: 行 43:
 
<math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math>
 
<math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math>
 
<math> \frac{1}{\mu_n} = \frac{1}{\mu_{n,temp}} + \frac{1}{\mu_{n,sat}} </math>
 
<math> \frac{1}{\mu_n} = \frac{1}{\mu_{n,temp}} + \frac{1}{\mu_{n,sat}} </math>
  +
<math> \frac{1}{\mu_p} = \frac{1}{\mu_{p,temp}} + \frac{1}{\mu_{p,sat}} </math>

於 2018年3月26日 (一) 10:14 的修訂

Function for organic material. We usually assume the carrier mobility is depend on electrical field and follow Poole-Frenkel field dependent mobility equation.

Mobility follow this equation


\mu=\mu_0 exp(\beta\sqrt{E})

Where 

  • \mu_0 is the zero-field mobility
  • \beta is the factor of mobility increasing
  • E is the electric field.


Format

$usemunpfunc
1 μe βe μh βh


Parameter Explanation

\mu_n=\mu_0 exp(\beta\sqrt{E}),  \mu_p=\mu_0 exp(\beta\sqrt{E}) 
  • μe : electron zero-field mobility. (cm^{2}eV^{-1}s^{-1})
  • βe : electron beta. (eV^{-1/2})
  • μh : hole zero-field mobility. (cm^{2}eV^{-1}s^{-1})
  • βh : hole beta. (eV^{-1/2})


$usemunpfunc
11 μe βe μh βh \mu_{n,sat} \mu_{p,sat}


Parameter Explanation type:

  • μe : electron zero-field mobility. (cm^{2}eV^{-1}s^{-1})
  • βe : electron beta. (eV^{-1/2})
  • μh : hole zero-field mobility. (cm^{2}eV^{-1}s^{-1})
  • βh : hole beta. (eV^{-1/2})
  • \mu_{n,sat} saturate electron mobility
  • \mu_{p,sat} saturate hole mobility
 \mu_{n,temp}=\mu_0 exp(\beta\sqrt{E}),  \mu_{p,temp}=\mu_0 exp(\beta\sqrt{E}) 
  \frac{1}{\mu_n} = \frac{1}{\mu_{n,temp}} + \frac{1}{\mu_{n,sat}} 
  \frac{1}{\mu_p} = \frac{1}{\mu_{p,temp}} + \frac{1}{\mu_{p,sat}}