「$usemunpfunc」:修訂間差異
跳至導覽
跳至搜尋
無編輯摘要 |
無編輯摘要 |
||
| 第29行: | 第29行: | ||
$usemunpfunc | $usemunpfunc | ||
11 μe βe μh βh <math>\ | 11 μe βe μh βh <math>\v_{n,sat}</math> <math>\v_{p,sat}</math> | ||
| 第39行: | 第39行: | ||
* μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math> | * μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math> | ||
* βh : hole beta. <math>(eV^{-1/2})</math> | * βh : hole beta. <math>(eV^{-1/2})</math> | ||
* <math>\ | * <math>\v_{n,sat}</math> saturate electron velocity (cm/s) | ||
* <math>\ | * <math>\v_{p,sat}</math> saturate hole velocity (cm/s) | ||
<math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math> | <math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>, <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math> | ||
<math> \ | |||
<math> \ | If <math> \mu_{n,temp} \times E > \v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} </math> | ||
If <math> \mu_{n,temp} \times E > \v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} </math> | |||
於 2018年3月26日 (一) 02:19 的修訂
Function for organic material. We usually assume the carrier mobility is depend on electrical field and follow Poole-Frenkel field dependent mobility equation.
Mobility follow this equation
Where
- is the zero-field mobility
- is the factor of mobility increasing
- is the electric field.
Format
$usemunpfunc 1 μe βe μh βh
Parameter Explanation
,
- μe : electron zero-field mobility.
- βe : electron beta.
- μh : hole zero-field mobility.
- βh : hole beta.
$usemunpfunc
11 μe βe μh βh 解析失敗 (不明函數 "\v"): {\displaystyle \v_{n,sat}}
解析失敗 (不明函數 "\v"): {\displaystyle \v_{p,sat}}
Parameter Explanation
- μe : electron zero-field mobility.
- βe : electron beta.
- μh : hole zero-field mobility.
- βh : hole beta.
- 解析失敗 (不明函數 "\v"): {\displaystyle \v_{n,sat}} saturate electron velocity (cm/s)
- 解析失敗 (不明函數 "\v"): {\displaystyle \v_{p,sat}} saturate hole velocity (cm/s)
,
If 解析失敗 (不明函數 "\v"): {\displaystyle \mu_{n,temp} \times E > \v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} }
If 解析失敗 (不明函數 "\v"): {\displaystyle \mu_{n,temp} \times E > \v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} }