「$ifapplyEgofT」:修訂間差異

出自DDCC TCAD TOOL Manual
跳至導覽 跳至搜尋
Yrwu留言 | 貢獻
無編輯摘要
Yrwu留言 | 貢獻
無編輯摘要
第2行: 第2行:
   
   
   <math>  Eg(T) = Eg(0) - \frac{\gamma \times T^{2} }{ T + \beta}  </math>
   <math>  Eg(T) = Eg(0) - \frac{\gamma \times T^{2} }{ T + \beta}  </math>
In the program, we don't set Eg(0), instead, we set Eg(300)
  <math>  Eg(T) = Eg(300) + \frac{\gamma \times 300^{2} }{ 300 + \beta}  - \frac{\gamma \times T^{2} }{ T + \beta}  </math>


Therefore, to enable the temperature-dependent Eg in the simulation, we need to add <br>.  
Therefore, to enable the temperature-dependent Eg in the simulation, we need to add <br>.  


  $ifapplyEgofT
  $ifapplyEgofT
  <math>Eg(0)_{1} </math>  <math> \gamma </math>  <math> \beta </math>
  <math>Eg(300)_{1} </math>  <math> \gamma </math>  <math> \beta </math>
  <math>Eg(0)_{2} </math>  <math> \gamma </math>  <math> \beta </math>
  <math>Eg(300)_{2} </math>  <math> \gamma </math>  <math> \beta </math>
  <math>Eg(0)_{3} </math>  <math> \gamma </math>  <math> \beta </math>
  <math>Eg(300)_{3} </math>  <math> \gamma </math>  <math> \beta </math>
  <math>Eg(0)_{4} </math>  <math> \gamma </math>  <math> \beta </math>
  <math>Eg(300)_{4} </math>  <math> \gamma </math>  <math> \beta </math>
  ...
  ...
  ...
  ...
第16行: 第20行:
If some material's coefficient cannot be found, please make  <math> \gamma = 0 </math>. So the program will keep the bandgap of this region as constant. <br>
If some material's coefficient cannot be found, please make  <math> \gamma = 0 </math>. So the program will keep the bandgap of this region as constant. <br>
Note that <br>  
Note that <br>  
  Eg(0) is the Eg at 0K, not 300K. So if the parameters source is not the same,
  Eg(300) is the Eg at 300K. With this modified equation, we can make the Eg is always the same as the original Eg at 300K
  <math>  Eg(300) = Eg(0) - \frac{\gamma \times 300^{2} }{ 300 + \beta} </math> may not be the same as the Eg in the [[$parameters]]. Please be careful to use this command.


<br><br>
<br><br>
  For advanced users who use libmodpar.f90. This function may have problem if the bandgap is changed in libmodpar.f90
  For advanced users who use libmodpar.f90. This function may have a problem if the bandgap is changed in libmodpar.f90


The related commands are:  [[$ifapplytauofT]], [[$ifapplymuofT]], [[$ifapplyEgofT]], [[$ifTversusJ]]
The related commands are:  [[$ifapplytauofT]], [[$ifapplymuofT]], [[$ifapplyEgofT]], [[$ifTversusJ]]

於 2021年6月14日 (一) 14:33 的修訂

Since the DDCC has the capability of solving the Poisson, drift-diffusion, and thermal solver self-consistently. It will need to consider the possibility of bandgap narrowing with temperature. Therefore, we can apply the temperature-dependent coefficients for the material's bandgap. Usually, the temperature-dependent bandgap can be expressed as:

 Eg(T)=Eg(0)γ×T2T+β

In the program, we don't set Eg(0), instead, we set Eg(300)

 Eg(T)=Eg(300)+γ×3002300+βγ×T2T+β

Therefore, to enable the temperature-dependent Eg in the simulation, we need to add
.

$ifapplyEgofT
Eg(300)1  γ  β
Eg(300)2  γ  β
Eg(300)3  γ  β
Eg(300)4  γ  β
...
...
to layer N

If some material's coefficient cannot be found, please make γ=0. So the program will keep the bandgap of this region as constant.
Note that

Eg(300) is the Eg at 300K. With this modified equation, we can make the Eg is always the same as the original Eg at 300K



For advanced users who use libmodpar.f90. This function may have a problem if the bandgap is changed in libmodpar.f90

The related commands are: $ifapplytauofT, $ifapplymuofT, $ifapplyEgofT, $ifTversusJ