「$usemunpfunc」:修訂間差異

出自DDCC TCAD TOOL Manual
跳至導覽 跳至搜尋
Yrwu留言 | 貢獻
無編輯摘要
Yrwu留言 | 貢獻
無編輯摘要
第39行: 第39行:
* μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math>
* μh : hole zero-field mobility. <math>(cm^{2}eV^{-1}s^{-1})</math>
* βh : hole beta. <math>(eV^{-1/2})</math>
* βh : hole beta. <math>(eV^{-1/2})</math>
* <math>\v_{n,sat}</math>  saturate electron velocity (cm/s)
* <math>v_{n,sat}</math>  saturate electron velocity (cm/s)
* <math>\v_{p,sat}</math>  saturate hole velocity (cm/s)
* <math>v_{p,sat}</math>  saturate hole velocity (cm/s)
   <math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>,  <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math>  
   <math>\mu_{n,temp}=\mu_0 exp(\beta\sqrt{E})</math>,  <math>\mu_{p,temp}=\mu_0 exp(\beta\sqrt{E})</math>  


   If <math> \mu_{n,temp} \times E > \v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} </math>
   If <math> \mu_{n,temp} \times E > v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} </math>
   If <math> \mu_{n,temp} \times E > \v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} </math>
   If <math> \mu_{n,temp} \times E > v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} </math>

於 2018年3月26日 (一) 02:19 的修訂

Function for organic material. We usually assume the carrier mobility is depend on electrical field and follow Poole-Frenkel field dependent mobility equation.

Mobility follow this equation


μ=μ0exp(βE)

Where 

  • μ0 is the zero-field mobility
  • β is the factor of mobility increasing
  • E is the electric field.


Format

$usemunpfunc
1 μe βe μh βh


Parameter Explanation

μn=μ0exp(βE),  μp=μ0exp(βE) 
  • μe : electron zero-field mobility. (cm2eV1s1)
  • βe : electron beta. (eV1/2)
  • μh : hole zero-field mobility. (cm2eV1s1)
  • βh : hole beta. (eV1/2)


$usemunpfunc
11 μe βe μh βh 解析失敗 (不明函數 "\v"): {\displaystyle \v_{n,sat}}
 解析失敗 (不明函數 "\v"): {\displaystyle \v_{p,sat}}


Parameter Explanation


  • μe : electron zero-field mobility. (cm2eV1s1)
  • βe : electron beta. (eV1/2)
  • μh : hole zero-field mobility. (cm2eV1s1)
  • βh : hole beta. (eV1/2)
  • vn,sat saturate electron velocity (cm/s)
  • vp,sat saturate hole velocity (cm/s)
 μn,temp=μ0exp(βE),  μp,temp=μ0exp(βE) 
 If 解析失敗 (不明函數 "\v"): {\displaystyle  \mu_{n,temp} \times E > v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} }

 If 解析失敗 (不明函數 "\v"): {\displaystyle  \mu_{n,temp} \times E > v_{n,sat}, then {\mu_n} = \frac{1\v_{n,sat}}{E} }