$ifapplyEgofT

出自 DDCC TCAD TOOL Manual
於 2021年6月9日 (三) 09:42 由 Yrwu (對話 | 貢獻) 所做的修訂

前往: 導覽搜尋

Since the DDCC has the capability of solving the Poisson, drift-diffusion, and thermal solver self-consistently. It will need to consider the possibility of bandgap narrowing with temperature. Therefore, we can apply the temperature-dependent coefficients for the material's bandgap. Usually, the temperature-dependent bandgap can be expressed as:

   Eg(T) = Eg(0) - \frac{\gamma \times T^{2} }{ T + \beta}   

Therefore, to enable the temperature-dependent Eg in the simulation, we need to add
.

$ifapplyEgofT
Eg(0)_{1}    \gamma    \beta 
Eg(0)_{2}    \gamma    \beta 
Eg(0)_{3}    \gamma    \beta 
Eg(0)_{4}    \gamma    \beta 
...
...
to layer N

If some material's coefficient cannot be found, please make  \gamma = 0 . So the program will keep the bandgap of this region as constant.
Note that

Eg(0) is the Eg at 0K, not 300K. So if the parameters source is not the same, 
   Eg(300) = Eg(0) - \frac{\gamma \times 300^{2} }{ 300 + \beta}  may not be the same as the Eg in the $parameters. Please be careful to use this command. 



For advanced users who use libmodpar.f90. This function may have problem if the bandgap is changed in libmodpar.f90

The related commands are: $ifapplytauofT, $ifapplymuofT, $ifapplyEgofT, $ifTversusJ