「2D DDCC」:修訂間差異
| (未顯示由 5 位使用者於中間所作的 48 次修訂) | |||
| 第1行: | 第1行: | ||
2D DDCC is named from two dimensional Drift-diffusion Charge Control solver. This is 2D finite element based Poisson and drift-diffusion solver developed by Dr. Yuh-Renn Wu. This solver initially developed with the thermal solver. Then the Poisson and drift-diffusion solver was added into this project. This solver was initially developed to solves AlGaN/GaN HEMT structure. Therefore, the 1D Schrodinger cross section solver was added into the program for obtaining the confined state information. The electric field distribution was then used in Monte Carlo program for high field transport. After Dr. Wu returned NTU, the program was then modified to solve LED based current spreading problem. The mesh algorithm was then improve gradually in order to deal with certain problem. After years development, the 2D FEM based Schrodinger eigen solver was added. It also accept additional module to read in the optical field from 2D FD-TD program so that it can consider the solar cell problem. Then the 2D ray tracing program was added into this project to solve the light extraction problem. This solver now can solve many different problems such as trap problem, Gaussian shape tail state models, field dependent mobility, thermal, light extraction. Recently, localization landscape model was also added into this program so that it can calculate the effective quantum potential very efficiently. This code is written with Fortran language. | 2D DDCC is named from two dimensional Drift-diffusion Charge Control solver. This is 2D finite element based Poisson and drift-diffusion solver developed by Dr. Yuh-Renn Wu. This solver initially developed with the thermal solver. Then the Poisson and drift-diffusion solver was added into this project. This solver was initially developed to solves AlGaN/GaN HEMT structure. Therefore, the 1D Schrodinger cross section solver was added into the program for obtaining the confined state information. The electric field distribution was then used in Monte Carlo program for high field transport. After Dr. Wu returned NTU, the program was then modified to solve LED based current spreading problem. The mesh algorithm was then improve gradually in order to deal with certain problem. After years development, the 2D FEM based Schrodinger eigen solver was added. It also accept additional module to read in the optical field from 2D FD-TD program so that it can consider the solar cell problem. Then the 2D ray tracing program was added into this project to solve the light extraction problem. This solver now can solve many different problems such as trap problem, Gaussian shape tail state models, field dependent mobility, thermal, light extraction. Recently, localization landscape model was also added into this program so that it can calculate the effective quantum potential very efficiently. This code is written with Fortran language. | ||
''' | == [[NTU-ITRI 2D-DDCC operation manual]] == | ||
== parameters assigned command | |||
'''● [[2D_LED]]'''<br> | |||
'''● [[2D_Vpit LED]]'''<br> | |||
'''● [[2D_OLED]]'''<br> | |||
'''● [[2D_HBT]]'''<br> | |||
'''● [[2D_HEMT]]'''<br> | |||
== Command Manual == | |||
parameters assigned command <br> | |||
[[$totalregion]]<br> | [[$totalregion]]<br> | ||
| 第13行: | 第25行: | ||
[[$assignparbyfunc]]<br> | [[$assignparbyfunc]]<br> | ||
[[$parameters]]<br> | [[$parameters]]<br> | ||
[[$usecylindricalrz]]<br> | |||
[[$opertemp]]<br> | [[$opertemp]]<br> | ||
| 第42行: | 第56行: | ||
[[$call2Dexciton]]<br> | [[$call2Dexciton]]<br> | ||
[[$2Dexcitonmode]]<br> | |||
[[$2Dexcitonpar]]<br> | [[$2Dexcitonpar]]<br> | ||
[[$solveeigenvalue]]<br> | [[$solveeigenvalue]]<br> | ||
| 第56行: | 第71行: | ||
[[$traps (2D)]]<br> | [[$traps (2D)]]<br> | ||
[[$multitraps]] <br> | [[$multitraps]] <br> | ||
[[$fieldenhancetraps]]<br> | |||
[[$fieldenhancemultitraps]] <br> | |||
[[$recombine]]<br> | [[$recombine]]<br> | ||
| 第69行: | 第86行: | ||
[[$usespecgen]]<br> | [[$usespecgen]]<br> | ||
[[$ifimpact_ion]]<br> | [[$ifimpact_ion]]<br> | ||
[[$ifimpact_new]]<br> | |||
[[$ifimpactusepureExy]]<br> | |||
[[$ifimpactuseEfgradiant]]<br> | |||
[[$ifschockley]]<br> | [[$ifschockley]]<br> | ||
| 第88行: | 第108行: | ||
[[$useresistor]]<br> | [[$useresistor]]<br> | ||
[[$useconstIg]]<br> | [[$useconstIg]]<br> | ||
[[$useconstId]]<br> | |||
[[$iffermiboltzman]]<br> | [[$iffermiboltzman]]<br> | ||
| 第95行: | 第116行: | ||
[[$ifgainwithpol]]<br> | [[$ifgainwithpol]]<br> | ||
[[$ifcalculategain]]<br> | [[$ifcalculategain]]<br> | ||
[[$ifcalcgth]]<br> | |||
[[$modelgainQWregion]]<br> | |||
| 第114行: | 第137行: | ||
[[$usetaunrbyfunc]]<br> | [[$usetaunrbyfunc]]<br> | ||
[[$usemubydopeT]]<br> | [[$usemubydopeT]]<br> | ||
[[$useMunpFunc]]<br> | |||
[[$usegenfile]]<br> | [[$usegenfile]]<br> | ||
| 第127行: | 第151行: | ||
[[$activateStimEL]]<br> | [[$activateStimEL]]<br> | ||
[[$minoutput]]<br> | [[$minoutput]]<br> | ||
[[$call2DRCWA]]<br> | |||
[[$only2DRCWA]]<br> | |||
[[$additionalefmass]]<br> | |||
[[$outputrangesetting]]<br> | |||
[[$solvecavitymode]]<br> | |||
[[$ifonlysolvecavity]]<br> | |||
[[$iffarfield]]<br> | |||
[[$solveRE]]<br> | |||
[[$useBTBT]]<br> | |||
[[$usenewBTBT]]<br> | |||
[[$adddiffusivedope]] <br> | |||
[[$LowTmode]] <br> | |||
[[$addefmassxyz]]<br> | |||
[[$addanisomobility]]<br> | |||
[[$landwith2ndE]]<br> | |||
[[$landwithlh]]<br> | |||
[[$minoutput]] <br> | |||
== time dependent ion move == | == time dependent ion move == | ||
| 第190行: | 第234行: | ||
[[$RCWArefractiveindex]]<br> | [[$RCWArefractiveindex]]<br> | ||
[[$RCWAabsorption2]]<br> | [[$RCWAabsorption2]]<br> | ||
[[$RCWAabsorption]]<br> | |||
[[$RCWAdielectric]]<br> | [[$RCWAdielectric]]<br> | ||
[[$RCWAdielecabsorption]]<br> | [[$RCWAdielecabsorption]]<br> | ||
| 第197行: | 第242行: | ||
[[$RCWAcavitystart]]<br> | [[$RCWAcavitystart]]<br> | ||
[[$RCWAcavityend]]<br> | [[$RCWAcavityend]]<br> | ||
[[ | [[$RCWArcaa]]<br> | ||
[[$ifRCWAsparse]]<br> | [[$ifRCWAsparse]]<br> | ||
[[$ifRCWAzgbsv]]<br> | [[$ifRCWAzgbsv]]<br> | ||
| 第233行: | 第278行: | ||
[[$deformboundary]]<br> | [[$deformboundary]]<br> | ||
[[$deformperiod]]<br> | |||
[[$deformafter]]<br> | [[$deformafter]]<br> | ||
[[$deformbeforemod]]<br> | [[$deformbeforemod]]<br> | ||
| 第282行: | 第328行: | ||
[[*.Nsum]]<br> | [[*.Nsum]]<br> | ||
[[*.time_ion]] <br> | [[*.time_ion]] <br> | ||
[[*.cavTE]]<br> | |||
[[*.fftri]]<br> | |||
[[*.cavffTE]]<br> | |||
[[*.lightextract]]<br> | |||
[[*.1dgainQW]]<br> | |||
[[*.modelgain]]<br> | |||
[[*.modelgainpeak]]<br> | |||
[[*.trans]]<br> | |||
[[*.NtSpt]]<br> | |||
[[*.ratecalEL]]<br> | |||
[[*.ratecalLIV]]<br> | |||
[[*_generation.dat]]<br> | |||
[[*_gensummary.txt]]<br> | |||
[[*TE_rcwaEy.dat]]<br> | |||
[[*TE_rcwaHx.dat]]<br> | |||
[[*TM_rcwaHy.dat]]<br> | |||
[[*TM_rcwaEx.dat]]<br> | |||
[[*TM_rcwaEz.dat]]<br> | |||
== output file format (Ray Tracing)== | == output file format (Ray Tracing)== | ||
| 第306行: | 第370行: | ||
[[*.rcwabottomemmision.dat]]<br> | [[*.rcwabottomemmision.dat]]<br> | ||
[[*.rcwaef2d.dat]]<br> | [[*.rcwaef2d.dat]]<br> | ||
[[*.rcwaEy.dat]]<br> | |||
[[*.rcwaHy.dat]]<br> | |||
[[*.x.dat]]<br> | [[*.x.dat]]<br> | ||
[[*.z.dat]]<br> | [[*.z.dat]]<br> | ||
於 2025年11月3日 (一) 13:48 的最新修訂
2D DDCC is named from two dimensional Drift-diffusion Charge Control solver. This is 2D finite element based Poisson and drift-diffusion solver developed by Dr. Yuh-Renn Wu. This solver initially developed with the thermal solver. Then the Poisson and drift-diffusion solver was added into this project. This solver was initially developed to solves AlGaN/GaN HEMT structure. Therefore, the 1D Schrodinger cross section solver was added into the program for obtaining the confined state information. The electric field distribution was then used in Monte Carlo program for high field transport. After Dr. Wu returned NTU, the program was then modified to solve LED based current spreading problem. The mesh algorithm was then improve gradually in order to deal with certain problem. After years development, the 2D FEM based Schrodinger eigen solver was added. It also accept additional module to read in the optical field from 2D FD-TD program so that it can consider the solar cell problem. Then the 2D ray tracing program was added into this project to solve the light extraction problem. This solver now can solve many different problems such as trap problem, Gaussian shape tail state models, field dependent mobility, thermal, light extraction. Recently, localization landscape model was also added into this program so that it can calculate the effective quantum potential very efficiently. This code is written with Fortran language.
NTU-ITRI 2D-DDCC operation manual
● 2D_LED
● 2D_OLED
● 2D_HBT
● 2D_HEMT
Command Manual
parameters assigned command
$totalregion
$ranges
$gmshlineboundary
$gmshsurfparameter
$triregionnumber
$triregiontype
$triranges
$assignparbyfunc
$parameters
$usecylindricalrz
$opertemp
$Schottky
$gatebias
$drainbias
$sourcebias
$addrefbias
$basebias
$2ndgateaddbarrier
$affinity
$gatewithworkfunc
$adddrainworkfunc
$addsourceworkfunc
$addbaseSB
$addvrefSB
$addbaseworkfunc
$addvrefworkfunc
$addsourceSB
$adddrainSB
$addbaseSB
$addvrefSB
$infile
$checkmesh
$outfile
$maxiterations
$errors
$call2Dexciton
$2Dexcitonmode
$2Dexcitonpar
$solveeigenvalue
$solveeigenbias
$eigensetting
$usefeast
$eigencalEl
$assignsumrange
$DoEalloyfluc 2D
$polcharge
$affinity
$usefieldmufunc
$gaussiantraps
$traps (2D)
$multitraps
$fieldenhancetraps
$fieldenhancemultitraps
$landscape2D
$landscapeDOS (2D)
$landshiftEcv
$generation
$usegenfunc
$usegenspecfunc
$usespecgen
$ifimpact_ion
$ifimpact_new
$ifimpactusepureExy
$ifimpactuseEfgradiant
$ifschockley
$ifuseconstvb
$iftrialmod
$usepardiso
$useevprofile
$xend
$yend
$useevversusT
$usedynataunrfunc
$useemufunc
$useemunfunc
$useemupfunc
$useemuTfunc
$useconstantmu
$useresistor
$useconstIg
$useconstId
$outputwave
$ifgainwithpol
$ifcalculategain
$ifcalcgth
$modelgainQWregion
$thermaldiff
$heatiterative
$heatbndistance
$maxTlimit
$heatsolvebytime
$heatsource
$timeevolve
$usechannelaveT
$solvetimestep2D
$savetimestep2D
$usetaunrbyfunc
$usemubydopeT
$useMunpFunc
$callpoissonexternal
$call2DNEGF
$Trapmemorymode
$RandomizedR
$usenonRAugRasheat
$activateStimEL
$minoutput
$call2DRCWA
$only2DRCWA
$additionalefmass
$solvecavitymode
$ifonlysolvecavity
$iffarfield
$solveRE
$useBTBT
$usenewBTBT
$adddiffusivedope
$LowTmode
$addefmassxyz
$addanisomobility
$landwith2ndE
$landwithlh
$minoutput
time dependent ion move
Ray Tracing parameters assigned command
$element_total/$photon_element_pass
$trifilename
$fetfilename
$totalparameterregion
$ranges (RayTracing)
$parameters (RayTracing)
$pattern_tri_region
$pattern_tri_period
$Metalregion
$setradseparately
$tracephase
$Metaltri
$diffusortype
gmsh setting
$setradseparate
$gmshfilename
$gmshdiffusor
$gmshparameterregion
Output setting
$Light_intensity_region_TBLR
$photon_total
$initialanglerange
$consider3dipoles
$TETMratio
$setcountedexitlength
$traceraypath
2D RCWA commands
$RCWAtotallayer
$RCWAfourier
$RCWAanglelength
$RCWAangle2
$RCWAwidth
$RCWAoxide2
$RCWAperiod
$RCWAlamdalength
$RCWAsourcelength
$RCWAsourceposition
$RCWAsourceintensereal
$RCWAsourceintenseimage
$RCWAlamda2
$RCWAxdiv
$RCWAxnode
$RCWAzdiv
$RCWArefractiveindexreal
$RCWArefractiveindex
$RCWAabsorption2
$RCWAabsorption
$RCWAdielectric
$RCWAdielecabsorption
$RCWAoxidedielectric
$RCWAoxideabsorption
$RCWAthickness
$RCWAcavitystart
$RCWAcavityend
$RCWArcaa
$ifRCWAsparse
$ifRCWAzgbsv
phasing out commands
$usedvprofile
$fermitable
$ifpulsemode
$ifdynarecombine
$initial
$ifshiftef
$ifshiftgateef
$ifshiftallef
Mesh setting input command
$xsecysecmaxob
$xnode
$ynode
$xdiv
$ydiv
$ygradualdiv
$xgradualdiv
$xd
$contact
$bottomcontactnum
$areacontact
$emptysection
$emptyperiodshape
$emptyperiodtriangle
$deformboundary
$deformperiod
$deformafter
$deformbeforemod
$emptytriangle
$emptysineregion
$emptysinesum
External function
function getmunbyET(ind,Ex,Ey,T,xp,yp)
function getmupbyET(ind,Ex,Ey,T,xp,yp)
function usefielddependent_n(indEl, matind ,Ex,Ey,T,xp,yp)
function usefielddependent_p(indEl, matind, Ex, Ey, T, xp, yp)
subroutine parameter_mod
subroutine updatetaunp
subroutine callgeneration(x,y,z,generation,ind)
subroutine callspecgeneration(nnode,x,y,eg,generation)
subroutine callspecgen(Annode,x,y,Eg,generation)
subroutine exciton2Dquench( )
Execution files
2D-ddcc-win64.exe & 2D-ddcc-win32.exe
2D-ddcc.exe (Linux version)
2D-ddcc-dyna.exe (Linux version with all dynamic link modules
raytrace2D-win64.exe | raytrace2D.exe
ddcc_2d.m & ddcc_2d.fig
resultopen.m resultopen.fig
Material.mat
load_gmsh.m
createTable.m
libiomp5md.dll and libiomp5md.lib
output file format
*.tri
*.fet
*.stimP
*.e
*.jn
*.iv (2D)
*.QE
*.stimsum
*.overlap
*.wv & *.wvp
*.timeiv
*.IQEALL
*.Nsum
*.time_ion
*.cavTE
*.fftri
*.cavffTE
*.lightextract
*.1dgainQW
*.modelgain
*.modelgainpeak
*.trans
*.NtSpt
*.ratecalEL
*.ratecalLIV
*_generation.dat
*_gensummary.txt
*TE_rcwaEy.dat
*TE_rcwaHx.dat
*TM_rcwaHy.dat
*TM_rcwaEx.dat
*TM_rcwaEz.dat
output file format (Ray Tracing)
*.photon.out
*.window.out
*.raytrace.out
*.angle.out
*.absorption.out
*.info.out
*raypathsave.way
*.phasesaved
*.angle.4surf.out
*.E-field-phasesum.out
output file format (RCWA)
*.rcwa2d.dat
*.rcwatopreflectivity.dat
*.rcwatoptransmission.dat
*.rcwabottomreflectivity.dat
*.rcwabottomtransmission.dat
*.rcwatopemmision.dat
*.rcwabottomemmision.dat
*.rcwaef2d.dat
*.rcwaEy.dat
*.rcwaHy.dat
*.x.dat
*.z.dat
*.degree.dat
*.farfield.dat
Frequently used global variables used in the program
Region based variables
par%xxxx
affinitypar(:)
Node based variables
sprsvc(:)
sprst(:)
sprsefn(:)
sprsefp(:)
gaussiantrapNt(:,:)
gaussiantrapEt(:,:)
gaussiantrapdegenercy(:,:)
gaussiantraptaun(:,:)
gaussiantraptaup(:,:)
gaussiantrapsigma(:,:)
Element based variables